Filters








9 Hits in 1.6 sec

On Two-Intersection Sets with Respect to Hyperplanes in Projective Spaces

Aart Blokhuis, Michel Lavrauw
2002 Journal of combinatorial theory. Series A  
-243)] a construction of a class of two-intersection sets with respect to hyperplanes in PGðr À 1; q t Þ; rt even, is given, with the same parameters as the union of ðq t=2 À 1Þ=ðq À 1Þ disjoint Baer subgeometries  ...  2 T; then Cðbl l À am ¼0 0: This implies that bl l T ðṽ v 1 ; . . .  ...  isomorphic to PGðr À 1; q t=2 Þ: We say that a two-intersection set isomorphic to such a union of subgeometries is of type I.  ... 
doi:10.1006/jcta.2002.3289 fatcat:durmbtgmynelvgpv32mqkzxziu

Page 19 of Mathematical Reviews Vol. 3, Issue 1 [page]

1942 Mathematical Reviews  
A note on subgeometries of projective geom- etry as the theories of tensors. Bull. Amer. Math. Soc. 47, 475-478 (1941).  ...  [MF 4690] After a discussion of Young’s symmetry operators so- called immanant tensors are introduced, which are certain numerical tensors associated with each partition of a natural number p.  ... 

A decomposition for combinatorial geometries

Thomas H. Brylawski
1972 Transactions of the American Mathematical Society  
Note that Fnm represents the mth truncation of the Boolean algebra B .  ...  of a vertex partition of a connected component of M.  ... 
doi:10.1090/s0002-9947-1972-0309764-6 fatcat:tar44qib5bfo7lweb3cweqaogm

A Decomposition for Combinatorial Geometries

Thomas H. Brylawski
1972 Transactions of the American Mathematical Society  
Note that Fnm represents the mth truncation of the Boolean algebra B .  ...  of a vertex partition of a connected component of M.  ... 
doi:10.2307/1996381 fatcat:djifk236hjevfgyuef4uqpmozi

Multiple spread retraction

Norman L. Johnson, Keith E. Mellinger
2003 Advances in Geometry  
or mixed partitions of a corresponding projective space.  ...  admitting fixedpoint-free collineation groups GK Ã , each of whose point orbits is the set of nonzero vectors of a 2-dimensional K-subspace, are shown to permit spread-retraction and produce either Baer subgeometry  ...  A Baer subgeometry partition produced from a spread as above is called a spread-retraction.  ... 
doi:10.1515/advg.2003.016 fatcat:zshxmaztzzcurjr3ef3vv37fre

Multiple Spread Retraction [chapter]

2007 Handbook of Finite Translation Planes  
or mixed partitions of a corresponding projective space.  ...  admitting fixedpoint-free collineation groups GK Ã , each of whose point orbits is the set of nonzero vectors of a 2-dimensional K-subspace, are shown to permit spread-retraction and produce either Baer subgeometry  ...  A Baer subgeometry partition produced from a spread as above is called a spread-retraction.  ... 
doi:10.1201/9781420011142.ch91 fatcat:h2fml3bffjh6vg7wjkat4a2wei

A thin near hexagon with 50 points

Rieuwert Blok, Bart De Bruyn, Ulrich Meierfankenfeld
2003 Journal of combinatorial theory. Series A  
L bb ð7% c; À % ð% c; À % ; ðÀ % c; À % L bb ð7ða; mÞÞ ða; ; ðÀa; ÀmÞ L bb ð7ð % a; % mÞÞ ð % a; % ; R.  ...  ; ðc; ÀmÞ L gbb ð % a; % m; % cÞ À % b; ð % a; % ; ð% c; À % L gb ða; À a; ða; L gb ðÀ % a; À % % a; ðÀ % a; À % L gb ða; c; a; ðc; L bb ð % a þ % c; i %  ... 
doi:10.1016/s0097-3165(03)00029-3 fatcat:vft4d3sk55drhlufd2w4pv2abi

Spatial aggregation: Data model and implementation

Leticia Gómez, Sophie Haesevoets, Bart Kuijpers, Alejandro A. Vaisman
2009 Information Systems  
Otherwise, the river must be partitioned in advance.  ...  A base GIS fact table schema is a tuple BFT ¼ ðpoint; L; that means, a fact table with the finest geometric granularity.  ... 
doi:10.1016/j.is.2009.03.002 fatcat:ht6mqqc7uje7fk5un5bdock7xe

Switching of generalized quadrangles of order s and applications

J. A. Thas
2003 Advances in Geometry  
(iii) If x is a point and L is a line not incident with x, then there is a unique pair ðy; A P Â B for which x I M I y I L.  ...  Let F be a flock of the quadratic cone K with vertex x of PGð3; qÞ, that is, a partition of K À fxg into q disjoint irreducible conics.  ... 
doi:10.1515/advg.2003.2003.s1.105 fatcat:6ar3cegxsfbenlyu7hy6pvzyni