1 Hit in 0.036 sec

The Role of AGN Feedback and Gas Viscosity in Hydrodynamical Simulations of Galaxy Clusters [chapter]

D. Sijacki, V. Springel
Eso Astrophysics Symposia  
We study the imprints of AGN feedback and physical viscosity on the properties of galaxy clusters using hydrodynamical simulation models carried out with the TreeSPH code GADGET-2. Besides self-gravity of dark matter and baryons, our approach includes radiative cooling and heating processes of the gas component and a multiphase model for star formation and SNe feedback. Additionally, we introduce a prescription for physical viscosity in GADGET-2, based on a SPH discretization of the
more » ... of the Navier-Stokes and general heat transfer equations. Adopting the Braginskii parameterization for the shear viscosity coefficient, we explore how gas viscosity influences the properties of AGN-driven bubbles. We also introduce a novel, self-consistent AGN feedback model where we simultaneously follow the growth and energy release of massive black holes embedded in a cluster environment. We assume that black holes accreting at low rates with respect to the Eddington limit are in a radiatively inefficient regime, and that most of the feedback energy will appear in a mechanical form. Thus, we introduce AGN-driven bubbles into the ICM with properties, such as radius and energy content, that are directly linked to the black hole physics. This model leads to a self-regulated mechanism for the black hole growth and overcomes the cooling flow problem in host halos, ranging from the scale of groups to that of massive clusters. (Abridged)
doi:10.1007/978-3-540-73484-0_43 fatcat:qt7t4htyorc33iqt7xrs47ahwu