1 Hit in 0.032 sec

DNA Methyltransferases in Malar Melasma and Their Modification by Sunscreen in Combination with 4% Niacinamide, 0.05% Retinoic Acid, or Placebo

Andres Eduardo Campuzano-García, Bertha Torres-Alvarez, Diana Hernández-Blanco, Cornelia Fuentes-Ahumada, Juan Diego Cortés-García, Juan Pablo Castanedo-Cázares
2019 BioMed Research International  
Background. Malar melasma has a chronic and recurrent character that may be related to epigenetic changes. Objective. To recognize the expression and DNA methylation of DNA methyltransferases (DNMTs) in malar melasma and perilesional skin, as well as the changes in DNMTs after their treatment with sunscreen in combination with 4% niacinamide, 0.05% retinoic acid, or placebo. Methods. Thirty female patients were clinically evaluated for the expression of DNMT1 and DNMT3b using real-time PCR and
more » ... real-time PCR and immunofluorescence. These initial results were compared to results after eight weeks of treatment with sunscreen in combination with niacinamide, retinoic acid, or placebo. Results. The relative expression of DNMT1 was significantly elevated in melasma compared with unaffected skin in all subjects, indicating DNA hypermethylation. After treatment, it was decreased in all groups: niacinamide (7 versus 1; p<0.01), retinoic acid (7 versus 2; p<0.05), and placebo (7 versus 3; p<0.05), which correlates with clinical improvement. DNMT3b was not overexpressed in lesional skin but reduced in all groups. Conclusions. We found DNA hypermethylation in melasma lesions. Environmental factors such as solar radiation may induce cellular changes that trigger hyperpigmentation through the activation of pathways regulated by epigenetic modifications. However, limiting or decreasing DNA methylation through sunscreen, niacinamide, and retinoic acid treatments that provide photoprotection and genetic transcription can counteract this.
doi:10.1155/2019/9068314 fatcat:letgqdehknf7rn3foypqrctxj4