1 Hit in 0.043 sec

Spontaneous curvature cancellation in forced thin sheets

Tao Liang, Thomas A. Witten
2006 Physical Review E  
In this paper we report numerically observed spontaneous vanishing of mean curvature on a developable cone made by pushing a thin elastic sheet into a circular container. We show that this feature is independent of thickness of the sheet, the supporting radius and the amount of deflection. Several variants of developable cone are studied to examine the necessary conditions that lead to the vanishing of mean curvature. It is found that the presence of appropriate amount of radial stress is
more » ... ial stress is necessary. The developable cone geometry somehow produces the right amount of radial stress to induce just enough radial curvature to cancel the conical azimuthal curvature. In addition, the circular symmetry of supporting container edge plays an important role. With an elliptical supporting edge, the radial curvature overcompensates the azimuthal curvature near the minor axis and undercompensates near the major axis. Our numerical finding is verified by a crude experiment using a reflective plastic sheet. We expect this finding to have broad importance in describing the general geometrical properties of forced crumpling of thin sheets.
doi:10.1103/physreve.73.046604 pmid:16711939 fatcat:3bzl6aby7rfuldcp6krfd6x5za