1 Hit in 0.041 sec

Unsupervised Novelty Detection Using Deep Autoencoders with Density Based Clustering

Tsatsral Amarbayasgalan, Bilguun Jargalsaikhan, Keun Ryu
2018 Applied Sciences  
Novelty detection is a classification problem to identify abnormal patterns; therefore, it is an important task for applications such as fraud detection, fault diagnosis and disease detection. However, when there is no label that indicates normal and abnormal data, it will need expensive domain and professional knowledge, so an unsupervised novelty detection approach will be used. On the other hand, nowadays, using novelty detection on high dimensional data is a big challenge and previous
more » ... and previous research suggests approaches based on principal component analysis (PCA) and an autoencoder in order to reduce dimensionality. In this paper, we propose deep autoencoders with density based clustering (DAE-DBC); this approach calculates compressed data and error threshold from deep autoencoder model, sending the results to a density based cluster. Points that are not involved in any groups are not considered a novelty; the grouping points will be defined as a novelty group depending on the ratio of the points exceeding the error threshold. We have conducted the experiment by substituting components to show that the components of the proposed method together are more effective. As a result of the experiment, the DAE-DBC approach is more efficient; its area under the curve (AUC) is shown to be 13.5 percent higher than state-of-the-art algorithms and other versions of the proposed method that we have demonstrated.
doi:10.3390/app8091468 fatcat:u5ljyjnnjrgrzkcdz27t4jqfkm