1 Hit in 0.045 sec

Aedes aegypti HPX8C modulates immune responses against viral infection

Ju-Mei Wang, Yang Cheng, Zuo-Kun Shi, Xiao-Feng Li, Long-Sheng Xing, Hong Jiang, Dan Wen, Yong-Qiang Deng, Ai-Hua Zheng, Cheng-Feng Qin, Zhen Zou, Eric Dumonteil
2019 PLoS Neglected Tropical Diseases  
Mosquitoes act as vectors of numerous pathogens that cause human diseases. Dengue virus (DENV) transmitted by mosquito, Aedes aegypti, is responsible for dengue fever epidemics worldwide with a serious impact on human health. Currently, disease control mainly relies on vector targeted intervention strategies. Therefore, it is imperative to understand the molecular mechanisms underlying the innate immune response of mosquitoes against pathogens. In the present study, the expression profiles of
more » ... ssion profiles of immunity-related genes in the midgut responding to DENV infection by feeding were analyzed by transcriptome and quantitative real-time PCR. The level of Antimicrobial peptides (AMPs) increased seven days post-infection (d.p.i.), which could be induced by the Toll immune pathway. The expression of reactive oxygen species (ROS) genes, including antioxidant genes, such as HPX7, HPX8A, HPX8B, HPX8C were induced at one d.p.i. and peaked again at ten d.p.i. in the midgut. Interestingly, down-regulation of the antioxidant gene HPX8C by RNA interference led to reduction in the virus titer in the mosquito, probably due to the elevated levels of ROS. Application of a ROS inhibitor and scavenger molecules further established the role of oxygen free radicals in the modulation of the immune response to DENV infection. Overall, our comparative transcriptome analyses provide valuable information about the regulation of immunity related genes in the transmission vector in response to DENV infection. It further allows us to identify novel molecular mechanisms underlying the host-virus interaction, which might aid in the development of novel strategies to control mosquito-borne diseases. Author summary HPX8C is a heme-containing peroxidase, which can move reactive oxygen species (ROS) damage to the organism by reducing H 2 O 2 to H 2 O. Previously, the peroxidase gene has been shown to modulate midgut immunity and regulate anti-malarial response in PLOS Neglected Tropical Diseases | https://doi.
doi:10.1371/journal.pntd.0007287 fatcat:ab7n66ur5fdytlyqhawg6ecluu