1 Hit in 0.24 sec

The crystal structure of khinite and polytypism in khinite and parakhinite

M. A. Cooper, F. C. Hawthorne, M. E. Back
2008 Mineralogical magazine  
The crystal structure of khinite, Pb2+Cu2+ 3Te6+O6(OH)2, orthorhombic, a = 5.7491(10), b = 10.0176(14), c = 24.022(3) Å, V = 1383.6(4) Å3, space group Fdd2, Z = 8, D calc = 6.29 g/cm3, from the Empire mine, Tombstone, Arizona, USA, has been solved by direct methods and refined to R 1 = 3.2% on the basis of 636 unique observed reflections. There is one distinct Te site occupied by Te and coordinated by six O atoms in an octahedral arrangement with a <Te–O> distance of 1.962 Å. typical of
more » ... 962 Å. typical of Te6+. There are three octahedrally-coordinated Cu sites, each of which is occupied by Cu2+ with <Cu–O> distances of 2.132, 2.151 and 2.308 Å, respectively. Each Cu octahedron shows four short meridional bonds (~1.95 Å) and two long apical bonds (2.46–2.99 Å) characteristic of Jahn-Teller-distorted Cu2+ octahedra. There is one distinct Pb site occupied by Pb and coordinated by six O atoms and two (OH) groups with a <Pb–O, OH> distance of 2.690 Å. TeF6 and CuΦ6 octahedra share edges and corners to form an [MΦ2] (where Φ = O, OH) layer of composition [TeCu3Φ8]. These layers stack along the c axis at 6 A intervals with Pb atoms between the layers. Identical layers occur in the structure of parakhinite, Pb2+Cu2+Te6+O6(OH)2, hexagonal, a = 5.765(2), c = 18.001(9) Å, V =518.0(4) Å3, space group P32, Z = 3, D calc = 6.30 g/cm3. It is only the relative stacking of the TeCu3Φ8 layers in the c direction that distinguishes the two structures, and hence khinite and parakhinite are polytypes.
doi:10.1180/minmag.2008.072.3.763 fatcat:cbxf6ha7zbgibfcm53mtjvx7te