1 Hit in 0.041 sec

Aged Skeletal Muscle Retains the Ability to Remodel Extracellular Matrix for Degradation of Collagen Deposition after Muscle Injury

Wan-Jing Chen, I-Hsuan Lin, Chien-Wei Lee, Yi-Fan Chen
2021 International Journal of Molecular Sciences  
Aging causes a decline in skeletal muscle function, resulting in a progressive loss of muscle mass, quality, and strength. A weak regenerative capacity is one of the critical causes of dysfunctional skeletal muscle in elderly individuals. The extracellular matrix (ECM) maintains the tissue framework structure in skeletal muscle. As shown by previous reports and our data, the gene expression of ECM components decreases with age, but the accumulation of collagen substantially increases in
more » ... ncreases in skeletal muscle. We examined the structural changes in ECM in aged skeletal muscle and found restricted ECM degradation. In aged skeletal muscles, several genes that maintain ECM structure, such as transforming growth factor β (TGF-β), tissue inhibitors of metalloproteinases (TIMPs), matrix metalloproteinases (MMPs), and cathepsins, were downregulated. Muscle injury can induce muscle repair and regeneration in young and adult skeletal muscles. Surprisingly, muscle injury could not only efficiently induce regeneration in aged skeletal muscle, but it could also activate ECM remodeling and the clearance of ECM deposition. These results will help elucidate the mechanisms of muscle fibrosis with age and develop innovative antifibrotic therapies to decrease excessive collagen deposition in aged muscle.
doi:10.3390/ijms22042123 pmid:33672763 fatcat:z66jqjsfpne5tbrmggsuosam3a