1 Hit in 0.056 sec

NO Adsorption and Oxidation on Mn Doped CeO2 (111) Surfaces: A DFT+U Study

Lu Liu, Chenghang Zheng, Junfeng Wang, Yongxin Zhang, Xiang Gao, Kefa Cen
2018 Aerosol and Air Quality Research  
The adsorption of NO molecules on Mn-doped CeO 2 (111) surfaces for NO oxidation has been studied by employing the periodic density functional theory plus U (DFT+U) method. Through our calculations, it is demonstrated how Mn-doped CeO 2 with superior NO oxidation activity benefits from the high mobility of the oxygen near the Mn cations. On unreduced Mn-doped CeO 2 (111) surfaces, the NO molecule preferentially interacted with the first neighboring O of the Mn cation, with the N also bonding to
more » ... e N also bonding to an Mn cation (E ads = -3.30 eV) or Ce cation (E ads = -2.90 eV). When NO adsorbs on the surface of defective Mn-doped CeO 2 with O 2 adsorbed in advance, an ONOO* four atoms species is formed on the surface (E ads = -2.51 eV and -2.02 eV), which is an intermediate and can decompose into NO 2 , NO 2 * and O*. The adsorption structure with higher adsorption energy has a closer geometry to NO 2 , indicating a deeper oxidation of NO. The calculation results indicate that the presence of Mn only has a strong effect on the nearby oxygen atoms and that the Mndoped CeO 2 surface has similar properties to a noble metal in NO oxidation catalysis. In DOS plots, the spin of the electron state of the adsorption structures involving the oxidation of NO is symmetric, indicating that electron transfer occurs from the slab to NO and strong covalent bonds are formed between N and O on the slab, which can also be confirmed by the charge density difference plots.
doi:10.4209/aaqr.2017.12.0597 fatcat:wvzzxjsd4zc5tmphazpu2eem5y