Filters








35 Hits in 2.7 sec

SURFACE IMPEDANCE OF THIN GRAPHITE FILMS AT MICROWAVE FREQUENCIES

Yuriy M. Penkin, Viktor A. Katrich, Mikhail V. Nesterenko, Dmitriy Yu. Penkin
2018 Progress In Electromagnetics Research M  
Figure 3 . 3 The scattering coefficients and the surface impedance of two-layer film for ε 1 = 5.0: 1h = 10 µm; 2 -h = 400 µm; 3 -h = 800 µm.  ...  The curves were plotted as a function of the graphite layer thickness for the substrate thickness h = 10 µm (curve 1), h = 400 µm (curve 2), and h = 800 µm (curve 3).  ... 
doi:10.2528/pierm18053003 fatcat:bq55yizorfealcxddbt6tw4zjy

ELECTRODYNAMIC CHARACTERISTICS OF A RADIAL IMPEDANCE VIBRATOR ON A PERFECT CONDUCTION SPHERE

Dmitriy Yu. Penkin, Victor A. Katrich, Yuriy M. Penkin, Mikhail V. Nesterenko, Victor M. Dakhov, Sergey L. Berdnik
2015 Progress in Electromagnetics Research B  
For the constant internal impedance per unit length, z i = const [Ohm/m] on the vibrator generatrix, which can be approximate by a radial ray segment in the direction θ = θ 0 and ϕ = ϕ 0 + r/(R + L/2),  ...  SPHERE To find the input impedance of the monopole Z in = R in + iX in or the input admittance Y in = 1/Z in = G in + iB in at the point of voltage supply, the well-known relation can be used Z in [O M  ... 
doi:10.2528/pierb14120102 fatcat:ud5huzqi6bhwdkql4ayngo4dqy

CONCEPT OF EXPERIMENTAL SIMULATOR FOR STUDYING LONGITUDINAL MAGNETIC WAVE PROPAGATION IN DIELECTRIC SAMPLES

Yuriy M. Penkin, Viktor A. Katrich, Dmitriy Yu. Penkin, Mikhail V. Nesterenko
2018 Progress In Electromagnetics Research Letters  
z (x,ȳ,z) = z 0 J m 0 Φ (x,ȳ) cos q (z − l)|ȳ =b 1 , (1) where J m 0 is the complex amplitude; Φ (x,ȳ) is a predefined function; the parameter q = π/(2l).  ...  = n = 0 (m, n are indices of the Green's function presented in the form of a double sum) are everywhere equal to zero.  ... 
doi:10.2528/pierl18092705 fatcat:h2zdzb7k5rf63mttuiq6j6vdpe

DEVELOPMENT OF FUNDAMENTAL THEORY OF THIN IMPEDANCE VIBRATORS

Yuriy M. Penkin, Victor A. Katrich, Mikhail V. Nesterenko
2016 Progress In Electromagnetics Research M  
Consider the following equation [3] 1 iωε 1 graddiv + k 2 1 SĜ e r, r J r d r = − E 0 ( r) + z i ( r) J ( r) , (1) where z i ( r) is the linear intrinsic impedance ([Ohm/m]) of the vibrator, E 0 ( r)  ... 
doi:10.2528/pierm15120105 fatcat:3qtntvs355gztnkzptltzaau4y

IMPEDANCE SYNTHESIS OF PLANE DIFFRACTION VIBRATOR ARRAYS

Yuriy M. Penkin, Viktor A. Katrich, Mikhail V. Nesterenko, Sergey L. Berdnik, Svetlana V. Pshenichnaya
2020 Progress In Electromagnetics Research M  
T T max M max _ Tq q q (a) (b) 1.0 T max = M max = q q q q q q q q q | E T (T, M max ) | / | E T (T max , M max ) | Tq q q q q q q q q q (a) (b) In this case, the simulation results have shown that the  ...  The simulation results for angles ϕ max = 120 • and ϕ max = 120 • are also presented in Table 5 and Table 6 . −0 −0 −0 −0 _ E T T max M _ _ E T T max M max _ Mq T max 'Tmax q 'Tmax _ E T T M max _ _ E  ... 
doi:10.2528/pierm19080905 fatcat:tznzv3ews5ahbnwyyt27gf23ne

FORMATION OF RADIATION FIELDS OF LINEAR VIBRATOR ARRAYS BY USING IMPEDANCE SYNTHESIS

Yuriy M. Penkin, Viktor A. Katrich, Mikhail V. Nesterenko
2017 Progress In Electromagnetics Research M  
            sink m (L − s) s ∫ −L E 0s ( s ′ ) sink m ( L + s ′ ) ds ′ + sink m (L + s) L ∫ s E 0s ( s ′ ) sink m ( L − s ′ ) ds ′ , (13) and one can see that it does not depend upon the vibrator  ...  m L sink m (L − |s|) = J 0 sink m (L − |s|) = J 0 f (s). (14) As can be seen, the approximate solution for the current on the vibrator with the variable impedance in Eq  ... 
doi:10.2528/pierm17031602 fatcat:n7frprq5uzh57homs4xyl76y4i

ALTERNATIVE REPRESENTATION OF GREEN'S FUNCTION FOR ELECTRIC FIELD ON SURFACES OF THIN VIBRATORS

Yuriy M. Penkin, Viktor Katrich, Mikhail V. Nesterenko
2016 Progress In Electromagnetics Research M  
graddiv + k 2 1 ) S ĜA ( r, r ) J( r )d r = − E 0 ( r ) + z i ( r ) J( r ), (8) where J ( r ) is the electric current on the vibrator; z i ( r) is the linear intrinsic impedance of the vibrator ([Ohm/m]  ... 
doi:10.2528/pierm16102604 fatcat:273q5yb2wzc6rfrpnplfgw5mty

ELECTROMAGNETIC WAVES RADIATION BY A VIBRATORS SYSTEM WITH VARIABLE SURFACE IMPEDANCE

Sergey L. Berdnik, Viktor Katrich, Mikhail V. Nesterenko, Yuriy M. Penkin
2016 Progress In Electromagnetics Research M  
(s m )J m (s m )], m = 1, 2, .  ...  The multi-parameter characteristics of three-element and multi-element antennas with variable impedance vibrators are calculated. m +k 2 Ln −Ln J n (s n )G sm (s m , s n ) ds n = −iω[E 0sm (s m ) + z im  ...  ⎬ ⎪ ⎭ mp (s m )f ⎧ ⎪ ⎨ ⎪ ⎩ s a a s ⎫ ⎪ ⎬ ⎪ ⎭ mq (s m )z im (s m )ds m , E s,a 0 mp = Lm −Lm f s,a mp E s,a 0sm (s m )ds m , δ mn = 1 if m = n, 0 if m = n .  ... 
doi:10.2528/pierm16091605 fatcat:7kosk7jw4rhepifuy5c2mgl5cu

WAVEGUIDE RADIATION OF THE COMBINED VIBRATOR-SLOT STRUCTURES

Sergey L. Berdnik, Viktor A. Katrich, Mikhail V. Nesterenko, Yuriy M. Penkin
2020 Progress in Electromagnetics Research B  
Then, in accordance with formulas (3), we obtain: f Cm = 2 k2 m − (k cos θ) 2 km cos (kL m cos θ) sin km L m − k sin (kL m cos θ) cos km L m cos θ −2L m cos km L m sin (kL m cos θ) kL m cos θ , m = 1,  ...  (s m ) = J 0m f m (s m ) and J s,a 3 (s 3 ) = J s,a 03 f s,a 3 (s 3 ) as approximating expressions for the currents.  ... 
doi:10.2528/pierb20052804 fatcat:zymoopvtujhvlnqmfoh4t2hryi

YAGI-UDA COMBINED RADIATING STRUCTURES OF CENTIMETER AND MILLIMETER WAVE BANDS

Sergey L. Berdnik, Viktor A. Katrich, Mikhail V. Nesterenko, Yuriy M. Penkin, Oleksandr M. Dumin
2020 Progress In Electromagnetics Research M  
n = m or n = m.  ...  − Ln f n (s n )G HsE sn (s m , s n )ds n ds m , n = 1, 2, . . . N; m = 1, 2, . . . N; L 0 −L 0 f s 0 000 (x)e iks 0 sin θ cos ϕ ds 0 , and F Cn = Ln −Ln f n (s n ) e ikn sin θ sin ϕ ds n .  ... 
doi:10.2528/pierm20041506 fatcat:xcs3hpbtgjeknbh253nffd4dm4

COMBINED VIBRATOR-SLOT STRUCTURES IN ELECTRODYNAMIC VOLUMES

Mikhail V. Nesterenko, Victor A. Katrich, Yuriy M. Penkin, Sergey L. Berdnik, Victor I. Kijko
2012 Progress in Electromagnetics Research B  
2 (graddiv + k 2 2 ) ΣĜ m V 2 ( r, r ) J m ( r )d r = 1 iωε 1 (graddiv + k 2 1 ) SĜ m V 1 ( r, r )Z S ( r )[ n 1 , J e ( r )]d r − k ω rot SĜ e V 1 ( r, r ) J e ( r )d r , (3b) where J e ( r ) is the  ...  + 1 iωε 1 (graddiv + k 2 1 ) SĜ e V 1 ( r, r ) J e ( r )d r + 1 4π rot SĜ m V 1 ( r, r )Z S ( r )[ n 1 , J e ( r )]d r , (3a) H 0 ( r ) + 1 iωµ 1 (graddiv + k 2 1 ) ΣĜ m V 1 ( r, r ) J m ( r )d r + 1 iωµ  ... 
doi:10.2528/pierb11101008 fatcat:j25li5juvfandirue47b5fkmcm

ANALYTICAL METHODS IN THEORY OF SLOT-HOLE COUPLING OF ELECTRODYNAMIC VOLUMES

Mikhail V. Nesterenko, V. A. Katrich, Yuriy M. Penkin, Sergey L. Berdnik
2007 Electromagnetic Waves  
the functions f s,a m (s m ) equal to: f s m (s m ) = cos ks m cos γL m − cos kL m cos γs m , f a m (s m ) = sin ks m sin γL m − sin kL m sin γs m .  ...  ) = 2 cos γL m sin kL m cos γL m − (γ/k) cos kL m sin γL m 1 − (γ/k) 2 − cos kL m sin 2γL m + 2γL m 2(γ/k) , (C13) f a (kL m ) = 2 sin γL m cos kL m sin γL m − (γ/k) sin kL m cos γL m 1 − (γ/k) 2 − sin  ...  n = 1 at m, n = 0, ε m,n = 2 at m, n = 0; x 0 and y 0 are the slots axes coordinates.  ... 
doi:10.2528/pier06121203 fatcat:uw3d7b5nsnabjid3lrodmeowai

ANALYTICAL SOLUTION OF IMPEDANCE SYNTHESIS PROBLEM FOR A 2D ARRAY OF THIN VIBRATORS

Yuriy M. Penkin, Victor A. Katrich, Mikhail V. Nesterenko, Sergey L. Berdnik
2018 Progress In Electromagnetics Research M  
Progress In Electromagnetics Research M, Vol. 65, 2018  ...  identical if the relations 1 − e −ik 1 [(n−1)dz cos θ+(m−1)dx sin θ cos ϕ] = iα nmβnm 1 + cos 2 θ sin 2 θ − k 1 L sin (k 1 L) F c(θ) θ=θmax; ϕ=ϕmax (9) are valid for any n and m.  ... 
doi:10.2528/pierm17111501 fatcat:ilrwhv2ztjc7dfyyoxc6q2km3e

Electromagnetic Waves Excitation by Thin Impedance Vibrators and Narrow Slots in Electrodynamic Volumes [chapter]

Mikhail V. Nesterenko, Sergey L. Berdnik, Victor A. Katrich, Yuriy M. Penkin
2015 Advanced Electromagnetic Waves  
n m M m V m m V m m m S V N m V n n V n n n e V m m V m m S G r r n E r r H r H r k ik G r r n E r r G r r n H r r p m p = = S ì ü é ù ¢ ¢ ¢ ï ï ë û ï ï = + + í ý ï ï é ù ¢ ¢ ¢ + ï ï ë û î þ é ù ¢ ¢ ¢  ...  The bodies have homogeneous material parameters: permittivity ε m 1 , ε m 2 , permeability μ m 1 , μ m 2 , and conductivity σ m 1 , σ m 2 .  ... 
doi:10.5772/61188 fatcat:cy3mgityffdo3heuls7sirdhyq

SLOTTED SPHERICAL ANTENNA WITH A MULTI-ELEMENT DIAPHRAGM IN THE WAVEGUIDE

Sergey L. Berdnik, Victor A. Katrich, Victor I. Kijko, Mikhail V. Nesterenko, Yuriy M. Penkin
2020 Progress In Electromagnetics Research M  
kL m cos πL m a − π ka cos kL m sin πL m a 1 − (π/ka) 2 − cos kL m sin 2πL m a + 2πL m a (2π/ka) .  ...  F C m (ϕ) C nm P m n (cos θ) Φ m n ⎞ ⎟ ⎟ ⎟ ⎠ , E eθ (r, θ, ϕ) = 1 r ∞ n=0 n m=0 ε m Q * n (r) F C m (ϕ) 2n(n + 1)C nm m 2 P m n (cos θ) sin θ F m n + dP m n (cos θ) dθ Φ m n , E eϕ (r, θ, ϕ) = − 1 r ∞  ...  A.1) : ε m u m n (ρ, ρ ) cos m(ϕ − ϕ ) 2n (n + 1) C nm sin θ sin θ  ... 
doi:10.2528/pierm20050806 fatcat:553xo37lyra67a36svzl7sdygu
« Previous Showing results 1 — 15 out of 35 results