Filters








113 Hits in 2.6 sec

Systematic Clustering of Transcription Start Site Landscapes

Xiaobei Zhao, Eivind Valen, Brian J. Parker, Albin Sandelin, Jürg Bähler
<span title="2011-08-24">2011</span> <i title="Public Library of Science (PLoS)"> <a target="_blank" rel="noopener" href="https://fatcat.wiki/container/s3gm7274mfe6fcs7e3jterqlri" style="color: black;">PLoS ONE</a> </i> &nbsp;
Genome-wide, high-throughput methods for transcription start site (TSS) detection have shown that most promoters have an array of neighboring TSSs where some are used more than others, forming a distribution of initiation propensities. TSS distributions (TSSDs) vary widely between promoters and earlier studies have shown that the TSSDs have biological implications in both regulation and function. However, no systematic study has been made to explore how many types of TSSDs and by extension core
more &raquo; ... promoters exist and to understand which biological features distinguish them. In this study, we developed a new non-parametric dissimilarity measure and clustering approach to explore the similarities and stabilities of clusters of TSSDs. Previous studies have used arbitrary thresholds to arrive at two general classes: broad and sharp. We demonstrated that in addition to the previous broad/sharp dichotomy an additional category of promoters exists. Unlike typical TATA-driven sharp TSSDs where the TSS position can vary a few nucleotides, in this category virtually all TSSs originate from the same genomic position. These promoters lack epigenetic signatures of typical mRNA promoters and a substantial subset of them are mapping upstream of ribosomal protein pseudogenes. We present evidence that these are likely mapping errors, which have confounded earlier analyses, due to the high similarity of ribosomal gene promoters in combination with known G addition bias in the CAGE libraries. Thus, previous two-class separations of promoter based on TSS distributions are motivated, but the ultra-sharp TSS distributions will confound downstream analyses if not removed.
<span class="external-identifiers"> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.1371/journal.pone.0023409">doi:10.1371/journal.pone.0023409</a> <a target="_blank" rel="external noopener" href="https://www.ncbi.nlm.nih.gov/pubmed/21887249">pmid:21887249</a> <a target="_blank" rel="external noopener" href="https://pubmed.ncbi.nlm.nih.gov/PMC3160847/">pmcid:PMC3160847</a> <a target="_blank" rel="external noopener" href="https://fatcat.wiki/release/fnkdv6boz5gwfapuzrmllvoefq">fatcat:fnkdv6boz5gwfapuzrmllvoefq</a> </span>
<a target="_blank" rel="noopener" href="https://web.archive.org/web/20170930155014/http://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0023409&amp;type=printable" title="fulltext PDF download" data-goatcounter-click="serp-fulltext" data-goatcounter-title="serp-fulltext"> <button class="ui simple right pointing dropdown compact black labeled icon button serp-button"> <i class="icon ia-icon"></i> Web Archive [PDF] <div class="menu fulltext-thumbnail"> <img src="https://blobs.fatcat.wiki/thumbnail/pdf/b9/db/b9dba11e55e93d6da303f699fce67a4421952c04.180px.jpg" alt="fulltext thumbnail" loading="lazy"> </div> </button> </a> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.1371/journal.pone.0023409"> <button class="ui left aligned compact blue labeled icon button serp-button"> <i class="unlock alternate icon" style="background-color: #fb971f;"></i> plos.org </button> </a> <a target="_blank" rel="external noopener" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3160847" title="pubmed link"> <button class="ui compact blue labeled icon button serp-button"> <i class="file alternate outline icon"></i> pubmed.gov </button> </a>

Amyloid-β Peptide Is a Substrate of the Human 20S Proteasome

Xiaobei Zhao, Jerry Yang
<span title="2010-08-25">2010</span> <i title="American Chemical Society (ACS)"> <a target="_blank" rel="noopener" href="https://fatcat.wiki/container/qaga5yeaebadtf3qgiktiul5nq" style="color: black;">ACS Chemical Neuroscience</a> </i> &nbsp;
Intraneuronal accumulation of ubiquitin conjugates is a pathological feature of neurodegenerative disorders such as Alzheimer's disease (AD). Previous reports propose that accumulation of ubiquitinated species in AD is a result of inhibition of proteasomal activity by amyloid-β (Aβ) peptides, which leads to blocking of ubiquitin-dependent protein degradation by the proteasome. Here, we provide additional insight into proteasomal dysfunction by Aβ peptides by revealing that aggregated forms of
more &raquo; ... (1-42) peptides (especially small oligomers) are, in fact, competitive substrates for the chymotrypsin-like activity of the human 20S (h20S) proteasome. In addition to examining the kinetics of the h20S proteasome activity in the presence or absence of Aβ peptides, we use gel electrophoresis, LC-MS, and TOF-MS/MS analyses to examine the degradation of Aβ(1-42) by the h20S proteasome. The observed peptide fragments resulting from proteolytic cleavage of Aβ were consistent with predicted cleavage sites from proteasome degradation. These results support that the interaction of Aβ peptides with the proteasome may play a mechanistic role in proteasomal dysfunction in AD pathology. These results may also reveal a previously unknown natural pathway for clearance of Aβ in normal or diseased cells.
<span class="external-identifiers"> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.1021/cn100067e">doi:10.1021/cn100067e</a> <a target="_blank" rel="external noopener" href="https://www.ncbi.nlm.nih.gov/pubmed/21116456">pmid:21116456</a> <a target="_blank" rel="external noopener" href="https://pubmed.ncbi.nlm.nih.gov/PMC2992454/">pmcid:PMC2992454</a> <a target="_blank" rel="external noopener" href="https://fatcat.wiki/release/wdhqn4vwhvfkbpvubx6a2zau7i">fatcat:wdhqn4vwhvfkbpvubx6a2zau7i</a> </span>
<a target="_blank" rel="noopener" href="https://web.archive.org/web/20200209122916/http://europepmc.org/backend/ptpmcrender.fcgi?accid=PMC2992454&amp;blobtype=pdf" title="fulltext PDF download" data-goatcounter-click="serp-fulltext" data-goatcounter-title="serp-fulltext"> <button class="ui simple right pointing dropdown compact black labeled icon button serp-button"> <i class="icon ia-icon"></i> Web Archive [PDF] <div class="menu fulltext-thumbnail"> <img src="https://blobs.fatcat.wiki/thumbnail/pdf/11/f1/11f1ada5768629133b715b4ff7f6139445215015.180px.jpg" alt="fulltext thumbnail" loading="lazy"> </div> </button> </a> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.1021/cn100067e"> <button class="ui left aligned compact blue labeled icon button serp-button"> <i class="external alternate icon"></i> acs.org </button> </a> <a target="_blank" rel="external noopener" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2992454" title="pubmed link"> <button class="ui compact blue labeled icon button serp-button"> <i class="file alternate outline icon"></i> pubmed.gov </button> </a>

Single-cell RNA-Seq analysis identified kidney progenitor cells from human urine

Yujia Wang, Yu Zhao, Zixian Zhao, Dandan Li, Hao Nie, Yufen Sun, Xiaobei Feng, Ting Zhang, Yu Ma, Jing Nie, Guangyan Cai, Xiangmei Chen (+1 others)
<span title="2021-01-09">2021</span> <i title="Springer Science and Business Media LLC"> <a target="_blank" rel="noopener" href="https://fatcat.wiki/container/pabnqenshbdzjlbb2bs2zs7jfa" style="color: black;">Protein &amp; Cell</a> </i> &nbsp;
<span class="external-identifiers"> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.1007/s13238-020-00816-5">doi:10.1007/s13238-020-00816-5</a> <a target="_blank" rel="external noopener" href="https://www.ncbi.nlm.nih.gov/pubmed/33420958">pmid:33420958</a> <a target="_blank" rel="external noopener" href="https://fatcat.wiki/release/4z5b2ze5cnfa7iig3y5ij33v4y">fatcat:4z5b2ze5cnfa7iig3y5ij33v4y</a> </span>
<a target="_blank" rel="noopener" href="https://web.archive.org/web/20210429075557/https://link.springer.com/content/pdf/10.1007/s13238-020-00816-5.pdf?error=cookies_not_supported&amp;code=e178a238-dbee-474a-af7d-e276f93ed8ae" title="fulltext PDF download" data-goatcounter-click="serp-fulltext" data-goatcounter-title="serp-fulltext"> <button class="ui simple right pointing dropdown compact black labeled icon button serp-button"> <i class="icon ia-icon"></i> Web Archive [PDF] <div class="menu fulltext-thumbnail"> <img src="https://blobs.fatcat.wiki/thumbnail/pdf/a6/39/a639ec6c9464dd92a76e3d3527fe559f82ebf36f.180px.jpg" alt="fulltext thumbnail" loading="lazy"> </div> </button> </a> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.1007/s13238-020-00816-5"> <button class="ui left aligned compact blue labeled icon button serp-button"> <i class="unlock alternate icon" style="background-color: #fb971f;"></i> springer.com </button> </a>

Human endonuclease VIII-like (NEIL) proteins in the giant DNA Mimivirus

Viswanath Bandaru, Xiaobei Zhao, Michael R. Newton, Cynthia J. Burrows, Susan S. Wallace
<span title="">2007</span> <i title="Elsevier BV"> <a target="_blank" rel="noopener" href="https://fatcat.wiki/container/5jq5jozdtfa6lfvrfjh6t7e2rm" style="color: black;">DNA Repair</a> </i> &nbsp;
Endonuclease VIII (Nei), which recognizes and repairs oxidized pyrimidines in the Base Excision Repair (BER) pathway, is sparsely distributed among both the prokaryotes and eukaryotes. Recently, we and others identified three homologs of E. coli endonuclease VIII-like (NEIL) proteins in humans. Here, we report identification of human NEIL homologs in Mimivirus, a giant DNA virus that infects Acanthamoeba. Characterization of the two mimiviral homologs, MvNei1 and MvNei2, showed that they share
more &raquo; ... ot only sequence homology but also substrate specificity to the human NEIL proteins, that is, they recognize oxidized pyrimidines in duplex DNA and in bubble substrates and as well show 5′2-deoxyribose-5-phosphate lyase (dRP lyase) activity. However, unlike MvNei1 and the human NEIL proteins, MvNei2 preferentially cleaves oxidized pyrimidines in single stranded DNA forming products with a different end chemistry. Interestingly, opposite base specificity of MvNei1 resembles human NEIL proteins for pyrimidine base damages whereas it resembles E. coli formamidopyrimidine DNA glycosylase (Fpg) for guanidinohydantoin (Gh), an oxidation product of 8-oxoguanine. Finally, a conserved arginine residue in the "zincless finger" motif, previously identified in human NEIL1, is required for the DNA glycosylase activity of MvNeil. Thus, Mimivirus represents the first example of a virus to carry oxidative DNA glycosylases with substrate specificities that resemble human NEIL proteins. Based on the sequence homology to the human NEIL homologs and novel bacterial NEIL homologs identified here, we predict that Mimivirus may have acquired the DNA glycosylases through the host-mediated lateral transfer from either a bacterium or from vertebrates.
<span class="external-identifiers"> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.1016/j.dnarep.2007.05.011">doi:10.1016/j.dnarep.2007.05.011</a> <a target="_blank" rel="external noopener" href="https://www.ncbi.nlm.nih.gov/pubmed/17627905">pmid:17627905</a> <a target="_blank" rel="external noopener" href="https://pubmed.ncbi.nlm.nih.gov/PMC2096709/">pmcid:PMC2096709</a> <a target="_blank" rel="external noopener" href="https://fatcat.wiki/release/3hwdxmr2kzeifkmhe34cqn6fz4">fatcat:3hwdxmr2kzeifkmhe34cqn6fz4</a> </span>
<a target="_blank" rel="noopener" href="https://web.archive.org/web/20200209103204/http://europepmc.org/backend/ptpmcrender.fcgi?accid=PMC2096709&amp;blobtype=pdf" title="fulltext PDF download" data-goatcounter-click="serp-fulltext" data-goatcounter-title="serp-fulltext"> <button class="ui simple right pointing dropdown compact black labeled icon button serp-button"> <i class="icon ia-icon"></i> Web Archive [PDF] <div class="menu fulltext-thumbnail"> <img src="https://blobs.fatcat.wiki/thumbnail/pdf/dd/ba/ddba4e0173e232dd39dcf191fad3439548e98874.180px.jpg" alt="fulltext thumbnail" loading="lazy"> </div> </button> </a> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.1016/j.dnarep.2007.05.011"> <button class="ui left aligned compact blue labeled icon button serp-button"> <i class="external alternate icon"></i> elsevier.com </button> </a> <a target="_blank" rel="external noopener" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2096709" title="pubmed link"> <button class="ui compact blue labeled icon button serp-button"> <i class="file alternate outline icon"></i> pubmed.gov </button> </a>

Optimization of Vehicle Transportation Route Based on IoT

Qian Yu, Yuanguo Wang, Xiaogang Jiang, Bailu Zhao, Xiuling Zhang, Xiaobei Wang, Qingqing Liu, Xianyong Li
<span title="2021-09-30">2021</span> <i title="Hindawi Limited"> <a target="_blank" rel="noopener" href="https://fatcat.wiki/container/wpareqynwbgqdfodcyhh36aqaq" style="color: black;">Mathematical Problems in Engineering</a> </i> &nbsp;
With the rapid development of logistics industry, optimization of road transport has become a constraint that must be overcome in the development of related industries. In the IoT era, classic car routing solutions could not meet many different needs. The relevant research findings are endless but not suitable to reduce costs in logistics and distribution processes and meet the needs of customers. This paper researches on vehicle path optimization using IoT technology and intelligent
more &raquo; ... Firstly, the traditional GA is optimized, and its coding mode, fitness function, selection, crossover, and mutation operators are studied. The crossover probability was set to 0.6, and the mutation probability was set to 0.1; then, according to the improved GA, a vehicle route optimization model was created. Finally, simulations were conducted to optimize vehicle routes for some distribution centers and 15 customer sites, and the model's validity was tested. Experimental data show that the improved genetic algorithm begins to converge in 100 generations with a running time of 37.265 s. We calculate the time sensitivity of the customer. An algorithmic model is then used to determine distribution plans based on product demand and time sensitivity. In addition, we compare distribution costs and customer satisfaction of algorithmic and randomized plans. The distribution cost and customer satisfaction of the algorithmic and random patterns were 498.09 yuan and 573.13 yuan and 140.45 and 131.35, respectively. This shows that the vehicle routing optimization model using IoT technology and an improved GA can reduce distribution costs and increase customer satisfaction.
<span class="external-identifiers"> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.1155/2021/1312058">doi:10.1155/2021/1312058</a> <a target="_blank" rel="external noopener" href="https://fatcat.wiki/release/l2eyowurdjgarhittzutxge62e">fatcat:l2eyowurdjgarhittzutxge62e</a> </span>
<a target="_blank" rel="noopener" href="https://web.archive.org/web/20211003220522/https://downloads.hindawi.com/journals/mpe/2021/1312058.pdf" title="fulltext PDF download" data-goatcounter-click="serp-fulltext" data-goatcounter-title="serp-fulltext"> <button class="ui simple right pointing dropdown compact black labeled icon button serp-button"> <i class="icon ia-icon"></i> Web Archive [PDF] <div class="menu fulltext-thumbnail"> <img src="https://blobs.fatcat.wiki/thumbnail/pdf/64/dc/64dc5b5be82e51009964c03142d39d668641d61f.180px.jpg" alt="fulltext thumbnail" loading="lazy"> </div> </button> </a> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.1155/2021/1312058"> <button class="ui left aligned compact blue labeled icon button serp-button"> <i class="unlock alternate icon" style="background-color: #fb971f;"></i> hindawi.com </button> </a>

The Development of a Macromolecular Analgesic for Arthritic Pain

Laura Weber, Xiaobei Wang, Rongguo Ren, Xin Wei, Gang Zhao, Junxiao Yang, Hongjiang Yuan, Huiling Pang, Hanjun Wang, Dong Wang
<span title="2019-01-31">2019</span> <i title="American Chemical Society (ACS)"> <a target="_blank" rel="noopener" href="https://fatcat.wiki/container/y5sludjkwbh5nkrrwedrml62lq" style="color: black;">Molecular Pharmaceutics</a> </i> &nbsp;
The addictive potential of clinically used opioids as a result of their direct action on the dopaminergic reward system in the brain has limited their application. In an attempt to reduce negative side effects as well as to improve the overall effectiveness of these analgesics, we have designed, synthesized, and evaluated an N-(2-hydroxypropyl)methacrylamide (HPMA)-based macromolecular prodrug of hydromorphone (HMP), a commonly used opioid. To this end, P-HMP was synthesized via RAFT
more &raquo; ... ion and a subsequent polymer analogous reaction. Its interaction with inflammatory cells in arthritic joints was evaluated in vitro using a RAW 264.7 cell culture, and subsequent confocal microscopy analysis confirmed that P-HMP could be internalized by the cells via endocytosis. In vivo imaging studies indicated that the prodrug can passively target the arthritic joint after systemic administration in a rodent model of monoarticular adjuvant-induced arthritis (MAA). The inflammatory pain-alleviating properties of the prodrug were assessed in MAA rats using the incapacitance test and were observed to be similar to dose-equivalent HMP. Analgesia through mechanisms at the spinal cord level was further measured using the tail flick test, and it was determined that the prodrug significantly reduced spinal cord analgesia versus free HMP, further validating the peripheral restriction of the macromolecular prodrug. Immunohistochemical analysis of cellular uptake of the P-HMP within the MAA knee joint proved the internalization of the prodrug by phagocytic synoviocytes, colocalized with HMP's target receptor as well as with pain-modulating ion channels. Therefore, it can be concluded that the novel inflammation-targeting polymeric prodrug of HMP (P-HMP) has the potential to be developed as an effective and safe analgesic agent for musculoskeletal pain.
<span class="external-identifiers"> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.1021/acs.molpharmaceut.8b01197">doi:10.1021/acs.molpharmaceut.8b01197</a> <a target="_blank" rel="external noopener" href="https://www.ncbi.nlm.nih.gov/pubmed/30702897">pmid:30702897</a> <a target="_blank" rel="external noopener" href="https://pubmed.ncbi.nlm.nih.gov/PMC6413733/">pmcid:PMC6413733</a> <a target="_blank" rel="external noopener" href="https://fatcat.wiki/release/3vjde7jafjhptk46xhz5ntaom4">fatcat:3vjde7jafjhptk46xhz5ntaom4</a> </span>
<a target="_blank" rel="noopener" href="https://web.archive.org/web/20200505082909/http://europepmc.org/backend/ptpmcrender.fcgi?accid=PMC6413733&amp;blobtype=pdf" title="fulltext PDF download" data-goatcounter-click="serp-fulltext" data-goatcounter-title="serp-fulltext"> <button class="ui simple right pointing dropdown compact black labeled icon button serp-button"> <i class="icon ia-icon"></i> Web Archive [PDF] <div class="menu fulltext-thumbnail"> <img src="https://blobs.fatcat.wiki/thumbnail/pdf/db/d2/dbd2c3b39ccac58b8810571a777dd82f5eb52835.180px.jpg" alt="fulltext thumbnail" loading="lazy"> </div> </button> </a> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.1021/acs.molpharmaceut.8b01197"> <button class="ui left aligned compact blue labeled icon button serp-button"> <i class="external alternate icon"></i> acs.org </button> </a> <a target="_blank" rel="external noopener" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6413733" title="pubmed link"> <button class="ui compact blue labeled icon button serp-button"> <i class="file alternate outline icon"></i> pubmed.gov </button> </a>

Altered CSF Proteomic Profiling of Paediatric Acute Lymphocytic Leukemia Patients with CNS Infiltration

Fei Mo, Xuelei Ma, Xiaobei Liu, Ruofan Zhou, Yunuo Zhao, Hui Zhou
<span title="2019-05-02">2019</span> <i title="Hindawi Limited"> <a target="_blank" rel="noopener" href="https://fatcat.wiki/container/wewutbvhmjgxpaawukserpbooe" style="color: black;">Journal of Oncology</a> </i> &nbsp;
Background. For childhood acute lymphocytic leukemia (ALL), central nervous system leukemia (CNSL) is still the main reason of treatment failure. Changes of cerebrospinal fluid (CSF) proteome are deemed to occur after intrathecal chemotherapy. Objective. To find critical CSF biomarkers, which could be utilized to increase diagnostic and prognostic accuracy of CNSL. Methods. We performed proteomic profiling of CSF before and after the treatment of six sporadic paediatric patients diagnosed as
more &raquo; ... with central nervous system (CNS) involvement. CSF samples were properly processed and analyzed through the use of label-free liquid chromatography-tandem mass spectrometry (LC-MS/MS). Results. Among identified 428 unique proteins in all CSF samples, we quantified 10 altered proteins with diverse biological functions after induction chemotherapy. Conclusions. The levels of those 10 proteins change during the treatment of CNSL. Some of the proteins are likely to play a vital biological role as biomarkers for the development of ALL. In addition, our results indicated the feasible and reproducible utility of CSF for diagnosis and prognosis of patients with CNSL.
<span class="external-identifiers"> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.1155/2019/3283629">doi:10.1155/2019/3283629</a> <a target="_blank" rel="external noopener" href="https://www.ncbi.nlm.nih.gov/pubmed/31186631">pmid:31186631</a> <a target="_blank" rel="external noopener" href="https://pubmed.ncbi.nlm.nih.gov/PMC6521476/">pmcid:PMC6521476</a> <a target="_blank" rel="external noopener" href="https://fatcat.wiki/release/clomcpqekvgbffxa4jx3f2zoqa">fatcat:clomcpqekvgbffxa4jx3f2zoqa</a> </span>
<a target="_blank" rel="noopener" href="https://web.archive.org/web/20200208052224/https://pdfs.semanticscholar.org/180d/7392405c73fa9e5e09561df1754137960e2d.pdf" title="fulltext PDF download" data-goatcounter-click="serp-fulltext" data-goatcounter-title="serp-fulltext"> <button class="ui simple right pointing dropdown compact black labeled icon button serp-button"> <i class="icon ia-icon"></i> Web Archive [PDF] <div class="menu fulltext-thumbnail"> <img src="https://blobs.fatcat.wiki/thumbnail/pdf/18/0d/180d7392405c73fa9e5e09561df1754137960e2d.180px.jpg" alt="fulltext thumbnail" loading="lazy"> </div> </button> </a> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.1155/2019/3283629"> <button class="ui left aligned compact blue labeled icon button serp-button"> <i class="unlock alternate icon" style="background-color: #fb971f;"></i> hindawi.com </button> </a> <a target="_blank" rel="external noopener" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6521476" title="pubmed link"> <button class="ui compact blue labeled icon button serp-button"> <i class="file alternate outline icon"></i> pubmed.gov </button> </a>

Superior Removal of Hydantoin Lesions Relative to Other Oxidized Bases by the Human DNA Glycosylase hNEIL1†

Nirmala Krishnamurthy, Xiaobei Zhao, Cynthia J. Burrows, Sheila S. David
<span title="">2008</span> <i title="American Chemical Society (ACS)"> <a target="_blank" rel="noopener" href="https://fatcat.wiki/container/4qyryvw5mvde5nt6xjruewxve4" style="color: black;">Biochemistry</a> </i> &nbsp;
The DNA glycosylase hNEIL1 initiates the base excision repair (BER) of a diverse array of lesions, including ring-opened purines and saturated pyrimidines. Of these, the hydantoin lesions, guanidinohydantoin (Gh) and the two diastereomers of spiroiminodihydantoin (Sp1 and Sp2) have garnered much recent attention due to their unusual structures, high mutagenic potential and detection in cells. In order to provide insight into the role of repair, the excision efficiency by hNEIL1 of these
more &raquo; ... n lesions relative to other known substrates was determined. Most notably, quantitative examination of the substrate specificity with hNEIL1 revealed that the hydantoin lesions are excised much more efficiently (> 100-fold faster) than the reported standard substrates thymine glycol (Tg) and 5-hydroxycytosine (5-OHC). Importantly, the glycosylase and β,δ-lyase reactions are tightly coupled such that the rate of the lyase activity does not influence the observed substrate specificity. The activity of hNEIL1 is also influenced by the base pair partner of the lesion, with both Gh and Sp removal being more efficient when paired with T, G or C than when paired with A. Notably, the most efficient removal is observed with the Gh or Sp paired in the unlikely physiological context with T; indeed, this may be a consequence of the unstable nature of base pairs with T. However, the facile removal via BER in promutagenic base pairs that are reasonably formed after replication (such as Gh:G) may be a factor that modulates the mutagenic profile of these lesions. In addition, hNEIL1 excises Sp1 faster than Sp2 indicating the enzyme can discriminate between the two diastereomers. This is the first time that a BER glycosylase has been shown to be able to preferentially excise one diastereomer of Sp. This may be a consequence of the architecture of the active site of hNEIL1 and the structural uniqueness of the Sp lesion. These results indicate that the hydantoin lesions are the best substrates identified thus far for hNEIL1, and suggest that repair of these lesions may be a critical function of the hNEIL1 enzyme in vivo. Cells experiencing oxidative stress have an overabundance of reactive oxygen species (ROS) such as superoxide, hydrogen peroxide, and hydroxyl radicals (1,2). ROS are present in cells as byproducts of endogenous metabolic reactions or as a result of external sources such as ionizing radiation. The reactions mediated by ROS can lead to various types of DNA damage including strand breaks, DNA-protein cross-links, abasic sites, and base lesions, which are potentially detrimental to cells (3-6). Oxidative DNA damage is mitigated by a variety of DNA repair pathways (7-9). The importance of repairing DNA damage has been highlighted by the correlation between defects in DNA repair pathways and cancer (7,10-12).
<span class="external-identifiers"> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.1021/bi800160s">doi:10.1021/bi800160s</a> <a target="_blank" rel="external noopener" href="https://www.ncbi.nlm.nih.gov/pubmed/18543945">pmid:18543945</a> <a target="_blank" rel="external noopener" href="https://pubmed.ncbi.nlm.nih.gov/PMC2574819/">pmcid:PMC2574819</a> <a target="_blank" rel="external noopener" href="https://fatcat.wiki/release/tkul2oypszhppouok2534s2dxu">fatcat:tkul2oypszhppouok2534s2dxu</a> </span>
<a target="_blank" rel="noopener" href="https://web.archive.org/web/20200205232416/http://europepmc.org/backend/ptpmcrender.fcgi?accid=PMC2574819&amp;blobtype=pdf" title="fulltext PDF download" data-goatcounter-click="serp-fulltext" data-goatcounter-title="serp-fulltext"> <button class="ui simple right pointing dropdown compact black labeled icon button serp-button"> <i class="icon ia-icon"></i> Web Archive [PDF] <div class="menu fulltext-thumbnail"> <img src="https://blobs.fatcat.wiki/thumbnail/pdf/50/4f/504f1c09e0bc722756db80b6a2ad70dcb787bad9.180px.jpg" alt="fulltext thumbnail" loading="lazy"> </div> </button> </a> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.1021/bi800160s"> <button class="ui left aligned compact blue labeled icon button serp-button"> <i class="external alternate icon"></i> acs.org </button> </a> <a target="_blank" rel="external noopener" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2574819" title="pubmed link"> <button class="ui compact blue labeled icon button serp-button"> <i class="file alternate outline icon"></i> pubmed.gov </button> </a>

Interaction of Antidepressants with the Serotonin and Norepinephrine Transporters

Lena Sørensen, Jacob Andersen, Mette Thomsen, Stinna M. R. Hansen, Xiaobei Zhao, Albin Sandelin, Kristian Strømgaard, Anders S. Kristensen
<span title="2012-10-19">2012</span> <i title="American Society for Biochemistry &amp; Molecular Biology (ASBMB)"> <a target="_blank" rel="noopener" href="https://fatcat.wiki/container/mryncoafc5cxdicldzfm4vlsze" style="color: black;">Journal of Biological Chemistry</a> </i> &nbsp;
SERT and NET are important targets for antidepressants. Results: Antidepressants are differentially affected by mutations within the central S1 pocket of SERT and NET. Conclusion: Our data indicate that many antidepressants bind within the S1 pocket, and inhibitor selectivity is determined by residues within this site. Significance: This study provides a framework for modeling of drug binding, which may be used in future structure-based drug design.
<span class="external-identifiers"> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.1074/jbc.m112.342212">doi:10.1074/jbc.m112.342212</a> <a target="_blank" rel="external noopener" href="https://www.ncbi.nlm.nih.gov/pubmed/23086945">pmid:23086945</a> <a target="_blank" rel="external noopener" href="https://pubmed.ncbi.nlm.nih.gov/PMC3527955/">pmcid:PMC3527955</a> <a target="_blank" rel="external noopener" href="https://fatcat.wiki/release/tyvkbsoynvhp7gxwlp36ipj37u">fatcat:tyvkbsoynvhp7gxwlp36ipj37u</a> </span>
<a target="_blank" rel="noopener" href="https://web.archive.org/web/20180726215839/http://www.jbc.org/content/287/52/43694.full.pdf" title="fulltext PDF download" data-goatcounter-click="serp-fulltext" data-goatcounter-title="serp-fulltext"> <button class="ui simple right pointing dropdown compact black labeled icon button serp-button"> <i class="icon ia-icon"></i> Web Archive [PDF] <div class="menu fulltext-thumbnail"> <img src="https://blobs.fatcat.wiki/thumbnail/pdf/1d/94/1d948e984a824c7f4d87f2f56908e059345c2da0.180px.jpg" alt="fulltext thumbnail" loading="lazy"> </div> </button> </a> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.1074/jbc.m112.342212"> <button class="ui left aligned compact blue labeled icon button serp-button"> <i class="unlock alternate icon" style="background-color: #fb971f;"></i> Publisher / doi.org </button> </a> <a target="_blank" rel="external noopener" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3527955" title="pubmed link"> <button class="ui compact blue labeled icon button serp-button"> <i class="file alternate outline icon"></i> pubmed.gov </button> </a>

In Vitro Ligation of Oligodeoxynucleotides Containing C8-Oxidized Purine Lesions Using Bacteriophage T4 DNA Ligase†

Xiaobei Zhao, James G. Muller, Mohan Halasyam, Sheila S. David, Cynthia J. Burrows
<span title="">2007</span> <i title="American Chemical Society (ACS)"> <a target="_blank" rel="noopener" href="https://fatcat.wiki/container/4qyryvw5mvde5nt6xjruewxve4" style="color: black;">Biochemistry</a> </i> &nbsp;
Ligases conduct the final stage of repair of DNA damage by sealing a single-stranded nick after excision of damaged nucleotides and reinsertion of correct nucleotides. Depending upon the circumstances and the success of the repair process, lesions may remain at the ligation site, either in the template or at the oligomer termini to be joined. Ligation experiments using bacteriophage T4 DNA ligase were carried out with purine lesions in four positions surrounding the nick site in a total of 96
more &raquo; ... fferent duplexes. The oxidized lesion 8-oxo-7,8-dihydroguanosine (OG) showed, as expected, that the enzyme is most sensitive to lesions on the 3′ end of the nick compared to the 5′ end and to lesions located in the intact template strand. In general, substrates containing the OG·A mismatch were more readily ligated than OG·C. Ligations of duplexes containing the OA·T base pair (OA=8oxo-7,8-dihydroadenosine) that could adopt an anti-anti conformation proceeded in high efficiencies. An OI·Acontaining duplex (OI = 8-oxo-7,8-dihydroinosine) behaved similarly to OG·A. Due to its low reduction potential, OG is readily oxidized to secondary oxidation products, such as the guanidinohydantoin (Gh) and spiroiminodihydantoin (Sp) nucleosides; these lesions also contain an oxo group at the original C8 position of the purine. Ligation of oligomers containing Gh and Sp occurred when opposite A and G although the overall ligation efficiencies were much lower than most OG base pairs. Steady-state kinetic studies were carried out for representative examples of lesions in the template. K m increased by 90-100-fold for OG·C, OI·C, OI·A and OA·T containing duplexes compared to G·C. Substrates containing Gh·A, Gh·G, Sp·A and Sp·G base pairs showed K m values 20-70-fold higher than G·C while the K m value for OG·A was 5 times lower than G·C. Reactive oxygen species (ROS) 1 such as O 2 −•, HO• and H 2 O 2 are continuously produced during normal metabolic processes, and their production is augmented by inflammation and exposure to certain agents (1,2). DNA is sensitive to ROS, and in vivo oxidative damage results in DNA strand breaks, base modifications and DNA-protein cross-links (1). Unrepaired oxidative DNA damage can be mutagenic and is implicated in carcinogenesis, neurological disorders and aging (2-4). Oxidation of guanine, the most easily oxidized nucleobase (5), can lead to the commonly observed lesion 8-oxo-7,8-dihydro-2′-deoxyguanosine (OG) which is regarded as a biomarker of oxidative DNA damage in the cell (6). OG is mutagenic in the absence of repair leading to G→T transversions (7-10). OG can be removed by the base excision repair pathway (BER) (11-14) involving glycosidic bond cleavage of the damaged base followed by excision of the remaining abasic (AP) site (15). A nucleotide is inserted by a DNA polymerase, and in a final stage, the nick is sealed by a DNA ligase (16) (17) (18) (19) (20) . Although DNA repair of oxidized base lesions has been extensively
<span class="external-identifiers"> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.1021/bi062214k">doi:10.1021/bi062214k</a> <a target="_blank" rel="external noopener" href="https://www.ncbi.nlm.nih.gov/pubmed/17323928">pmid:17323928</a> <a target="_blank" rel="external noopener" href="https://pubmed.ncbi.nlm.nih.gov/PMC2442820/">pmcid:PMC2442820</a> <a target="_blank" rel="external noopener" href="https://fatcat.wiki/release/azeoenf6dvfyrmm3q3hwcpy27u">fatcat:azeoenf6dvfyrmm3q3hwcpy27u</a> </span>
<a target="_blank" rel="noopener" href="https://web.archive.org/web/20200210103805/http://europepmc.org/backend/ptpmcrender.fcgi?accid=PMC2442820&amp;blobtype=pdf" title="fulltext PDF download" data-goatcounter-click="serp-fulltext" data-goatcounter-title="serp-fulltext"> <button class="ui simple right pointing dropdown compact black labeled icon button serp-button"> <i class="icon ia-icon"></i> Web Archive [PDF] <div class="menu fulltext-thumbnail"> <img src="https://blobs.fatcat.wiki/thumbnail/pdf/4b/29/4b29f92d71ced793ac417444c5670657d282fd90.180px.jpg" alt="fulltext thumbnail" loading="lazy"> </div> </button> </a> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.1021/bi062214k"> <button class="ui left aligned compact blue labeled icon button serp-button"> <i class="external alternate icon"></i> acs.org </button> </a> <a target="_blank" rel="external noopener" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2442820" title="pubmed link"> <button class="ui compact blue labeled icon button serp-button"> <i class="file alternate outline icon"></i> pubmed.gov </button> </a>

Prediction of RNA Polymerase II recruitment, elongation and stalling from histone modification data

Yun Chen, Mette Jørgensen, Raivo Kolde, Xiaobei Zhao, Brian Parker, Eivind Valen, Jiayu Wen, Albin Sandelin
<span title="2011-11-03">2011</span> <i title="Springer Nature"> <a target="_blank" rel="noopener" href="https://fatcat.wiki/container/4srzxifvfrdlhjhg3dimznkp7m" style="color: black;">BMC Genomics</a> </i> &nbsp;
<span class="external-identifiers"> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.1186/1471-2164-12-544">doi:10.1186/1471-2164-12-544</a> <a target="_blank" rel="external noopener" href="https://www.ncbi.nlm.nih.gov/pubmed/22047616">pmid:22047616</a> <a target="_blank" rel="external noopener" href="https://pubmed.ncbi.nlm.nih.gov/PMC3228824/">pmcid:PMC3228824</a> <a target="_blank" rel="external noopener" href="https://fatcat.wiki/release/hkcjubmktzc6dboruwald5hnru">fatcat:hkcjubmktzc6dboruwald5hnru</a> </span>
<a target="_blank" rel="noopener" href="https://web.archive.org/web/20170818010010/https://www.biomedcentral.com/content/supplementary/1471-2164-12-544-s1.pdf" title="fulltext PDF download" data-goatcounter-click="serp-fulltext" data-goatcounter-title="serp-fulltext"> <button class="ui simple right pointing dropdown compact black labeled icon button serp-button"> <i class="icon ia-icon"></i> Web Archive [PDF] <div class="menu fulltext-thumbnail"> <img src="https://blobs.fatcat.wiki/thumbnail/pdf/c8/06/c8065cc661b7f28654db41ba3e1a4c3b3547b816.180px.jpg" alt="fulltext thumbnail" loading="lazy"> </div> </button> </a> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.1186/1471-2164-12-544"> <button class="ui left aligned compact blue labeled icon button serp-button"> <i class="unlock alternate icon" style="background-color: #fb971f;"></i> springer.com </button> </a> <a target="_blank" rel="external noopener" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3228824" title="pubmed link"> <button class="ui compact blue labeled icon button serp-button"> <i class="file alternate outline icon"></i> pubmed.gov </button> </a>

Knockdown of Stat3 activity in vivo prevents diabetic glomerulopathy

Ting-Chi Lu, Zhao-Hui Wang, Xiaobei Feng, Peter Y. Chuang, Wei Fang, Yuhong Shen, David E. Levy, Huabao Xiong, Nan Chen, John Cijiang He
<span title="">2009</span> <i title="Elsevier BV"> <a target="_blank" rel="noopener" href="https://fatcat.wiki/container/3m6b6iknnva5hipfqmgwzuvyfq" style="color: black;">Kidney International</a> </i> &nbsp;
<span class="external-identifiers"> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.1038/ki.2009.98">doi:10.1038/ki.2009.98</a> <a target="_blank" rel="external noopener" href="https://www.ncbi.nlm.nih.gov/pubmed/19357722">pmid:19357722</a> <a target="_blank" rel="external noopener" href="https://pubmed.ncbi.nlm.nih.gov/PMC2888596/">pmcid:PMC2888596</a> <a target="_blank" rel="external noopener" href="https://fatcat.wiki/release/jqrjcqeaanbynhn7yhmpu7jn4e">fatcat:jqrjcqeaanbynhn7yhmpu7jn4e</a> </span>
<a target="_blank" rel="noopener" href="https://web.archive.org/web/20190413111355/https://core.ac.uk/download/pdf/82269087.pdf" title="fulltext PDF download" data-goatcounter-click="serp-fulltext" data-goatcounter-title="serp-fulltext"> <button class="ui simple right pointing dropdown compact black labeled icon button serp-button"> <i class="icon ia-icon"></i> Web Archive [PDF] <div class="menu fulltext-thumbnail"> <img src="https://blobs.fatcat.wiki/thumbnail/pdf/a5/29/a529defd5bd5998fe097dff663c5ab678dac001a.180px.jpg" alt="fulltext thumbnail" loading="lazy"> </div> </button> </a> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.1038/ki.2009.98"> <button class="ui left aligned compact blue labeled icon button serp-button"> <i class="external alternate icon"></i> Publisher / doi.org </button> </a> <a target="_blank" rel="external noopener" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2888596" title="pubmed link"> <button class="ui compact blue labeled icon button serp-button"> <i class="file alternate outline icon"></i> pubmed.gov </button> </a>

Erratum to: Sorption of U(VI) onto a decarbonated calcareous soil

Yuying Zhang, Haogui Zhao, Qiaohui Fan, Xiaobei Zheng, Ping Li, Shengping Liu, Wangsuo Wu
<span title="2013-04-03">2013</span> <i title="Springer Nature"> <a target="_blank" rel="noopener" href="https://fatcat.wiki/container/v3f2o42p2rfi7ln4tmdgjtjehi" style="color: black;">Journal of Radioanalytical and Nuclear Chemistry</a> </i> &nbsp;
In looking through our published article, we found that there is a mistake in Fig. 14 , where a wrong legend was used. The authors regret very much that the incorrect version of Fig . 14 appeared in the original manuscript. The correct version of the Fig. 14 is presented here. 2 4 6 8 1 0 1 2 0 20 40 60 80 100 P(CO 2 )=10 -3.58 atm CO 2 -free Sorption (%) pH Fig. 14 Effect of CO 2 on U(VI) sorption on DCS as a function of pH values. C[UO 2 2? ] initial = 2.86 9 10 -5 mol/L, I = 0.05 mol/L NaClO
more &raquo; ... 4 , m/V = 0.4 g/L, T = 25 ± 1°C. j: CO 2 -free, h: P(CO 2 ) =
<span class="external-identifiers"> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.1007/s10967-013-2481-3">doi:10.1007/s10967-013-2481-3</a> <a target="_blank" rel="external noopener" href="https://fatcat.wiki/release/svsxcb26f5bmhd4mmpy4w3f75m">fatcat:svsxcb26f5bmhd4mmpy4w3f75m</a> </span>
<a target="_blank" rel="noopener" href="https://web.archive.org/web/20180728022255/https://link.springer.com/content/pdf/10.1007%2Fs10967-013-2481-3.pdf" title="fulltext PDF download" data-goatcounter-click="serp-fulltext" data-goatcounter-title="serp-fulltext"> <button class="ui simple right pointing dropdown compact black labeled icon button serp-button"> <i class="icon ia-icon"></i> Web Archive [PDF] <div class="menu fulltext-thumbnail"> <img src="https://blobs.fatcat.wiki/thumbnail/pdf/97/4f/974f882ef071d3a91877860f79e4efdeff73229a.180px.jpg" alt="fulltext thumbnail" loading="lazy"> </div> </button> </a> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.1007/s10967-013-2481-3"> <button class="ui left aligned compact blue labeled icon button serp-button"> <i class="external alternate icon"></i> springer.com </button> </a>

Real-time Imaging of Axonal Transport of Quantum Dot-labeled BDNF in Primary Neurons

Xiaobei Zhao, Yue Zhou, April M. Weissmiller, Matthew L. Pearn, William C. Mobley, Chengbiao Wu
<span title="2014-09-15">2014</span> <i title="MyJove Corporation"> <a target="_blank" rel="noopener" href="https://fatcat.wiki/container/fun2ww7r2rhm5k7oxcmmrgntwi" style="color: black;">Journal of Visualized Experiments</a> </i> &nbsp;
<span class="external-identifiers"> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.3791/51899">doi:10.3791/51899</a> <a target="_blank" rel="external noopener" href="https://www.ncbi.nlm.nih.gov/pubmed/25286194">pmid:25286194</a> <a target="_blank" rel="external noopener" href="https://pubmed.ncbi.nlm.nih.gov/PMC4828072/">pmcid:PMC4828072</a> <a target="_blank" rel="external noopener" href="https://fatcat.wiki/release/bctmdtpvw5hxzgalendy3htj2u">fatcat:bctmdtpvw5hxzgalendy3htj2u</a> </span>
<a target="_blank" rel="noopener" href="https://web.archive.org/web/20190309195741/http://pdfs.semanticscholar.org/ff09/87f880ca618d6d2eb5a967660f9d5b123445.pdf" title="fulltext PDF download" data-goatcounter-click="serp-fulltext" data-goatcounter-title="serp-fulltext"> <button class="ui simple right pointing dropdown compact black labeled icon button serp-button"> <i class="icon ia-icon"></i> Web Archive [PDF] <div class="menu fulltext-thumbnail"> <img src="https://blobs.fatcat.wiki/thumbnail/pdf/ff/09/ff0987f880ca618d6d2eb5a967660f9d5b123445.180px.jpg" alt="fulltext thumbnail" loading="lazy"> </div> </button> </a> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.3791/51899"> <button class="ui left aligned compact blue labeled icon button serp-button"> <i class="external alternate icon"></i> Publisher / doi.org </button> </a> <a target="_blank" rel="external noopener" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4828072" title="pubmed link"> <button class="ui compact blue labeled icon button serp-button"> <i class="file alternate outline icon"></i> pubmed.gov </button> </a>

Mutation versus Repair: NEIL1 Removal of Hydantoin Lesions in Single-Stranded, Bulge, Bubble, and Duplex DNA Contexts

Xiaobei Zhao, Nirmala Krishnamurthy, Cynthia J. Burrows, Sheila S. David
<span title="2010-03-02">2010</span> <i title="American Chemical Society (ACS)"> <a target="_blank" rel="noopener" href="https://fatcat.wiki/container/4qyryvw5mvde5nt6xjruewxve4" style="color: black;">Biochemistry</a> </i> &nbsp;
Human DNA glycosylase NEIL1 exhibits a superior ability to remove oxidized guanine lesions guanidinohydantoin (Gh) and spiroiminodihydantoin (Sp) from duplex DNA in comparison to other substrates. In the present work, Gh and Sp lesions in bubble, bulge and single-stranded DNA were found to be good substrates for NEIL1 but were typically excised at much slower rates than from canonical duplex substrates. A notable exception was the activity of NEIL1 on removal of Gh in bubble structures which
more &raquo; ... roaches that of the normal duplex substrate. The cleavage of Gh in the template strand of a replication or transcription bubble may prevent mutations associated with Gh during replication or transcription. However, hydantoin lesion removal in the absence of an opposite base may also result in strand breaks and potentially deletion and frameshift mutations. Consistent with this as a potential mechanism leading to an N-1 frameshift mutation, the nick left after the removal of the Gh lesion in a DNA bulge by NEIL1 was efficiently religated in the presence of polynucleotide kinase (PNK) and human DNA ligase III (Lig III). These results indicate that NEIL1 does not require a base opposite to identify and remove hydantoin lesions. Depending on the context, the glycosylase activity of NEIL1 may stall replication and prevent mutations or lead to inappropriate removal that may contribute to the mutational spectrum of these unusual lesions. Reactive oxygen species (ROS) are generated in mitochondria as byproducts of oxygen respiration. These radicals can be over-produced in cells under oxidative stress, due to inflammation, or as a result of exposure to toxic agents including ionizing radiation (1,2). Although ROS are produced as normal products of cellular metabolism, excessive free radicals can react with DNA, RNA, lipids and proteins, resulting in deleterious effects. Oxidative DNA damage, including abasic sites, base lesions, DNA strand breaks and DNA-protein cross-links, are implicated in a number of diseases such as cancer, aging and neurological diseases (3-6).
<span class="external-identifiers"> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.1021/bi901852q">doi:10.1021/bi901852q</a> <a target="_blank" rel="external noopener" href="https://www.ncbi.nlm.nih.gov/pubmed/20099873">pmid:20099873</a> <a target="_blank" rel="external noopener" href="https://pubmed.ncbi.nlm.nih.gov/PMC2872175/">pmcid:PMC2872175</a> <a target="_blank" rel="external noopener" href="https://fatcat.wiki/release/vglqyzpq45c4rctfdykxhkkdre">fatcat:vglqyzpq45c4rctfdykxhkkdre</a> </span>
<a target="_blank" rel="noopener" href="https://web.archive.org/web/20200208232013/http://europepmc.org/backend/ptpmcrender.fcgi?accid=PMC2872175&amp;blobtype=pdf" title="fulltext PDF download" data-goatcounter-click="serp-fulltext" data-goatcounter-title="serp-fulltext"> <button class="ui simple right pointing dropdown compact black labeled icon button serp-button"> <i class="icon ia-icon"></i> Web Archive [PDF] <div class="menu fulltext-thumbnail"> <img src="https://blobs.fatcat.wiki/thumbnail/pdf/9e/e2/9ee2dc6e8bb6a7f008a2a880018fec73b291a129.180px.jpg" alt="fulltext thumbnail" loading="lazy"> </div> </button> </a> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.1021/bi901852q"> <button class="ui left aligned compact blue labeled icon button serp-button"> <i class="external alternate icon"></i> acs.org </button> </a> <a target="_blank" rel="external noopener" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2872175" title="pubmed link"> <button class="ui compact blue labeled icon button serp-button"> <i class="file alternate outline icon"></i> pubmed.gov </button> </a>
&laquo; Previous Showing results 1 &mdash; 15 out of 113 results