Filters








7 Hits in 0.5 sec

Incorporating outlier information into diffusion MR tractogram filtering for robust structural brain connectivity and microstructural analyses [article]

Viljami Sairanen, Mario Ocampo-Pineda, Cristina Granziera, Simona Schiavi, Alessandro Daducci
2021 bioRxiv   pre-print
., 2016; Sairanen et al., 2017 Sairanen et al., , 2018 .  ...  V Sairanen et al.: Preprint submitted to Elsevier Page 8 of 12  ... 
doi:10.1101/2021.06.09.447697 fatcat:lxqu2374mrah5ke4wlyzc4alra

TMS uncovers details about sub-regional language-specific processing networks in early bilinguals

Sini Hämäläinen, Niko Mäkelä, Viljami Sairanen, Minna Lehtonen, Teija Kujala, Alina Leminen
2018 NeuroImage  
doi:10.1016/j.neuroimage.2017.12.086 pmid:29305911 fatcat:wsfxbx4zc5boxj5fpbmfyqdspe

Statistical Permutation Test Reveals Progressive and Region-Specific Iron Accumulation in the Thalami of Children with Aspartylglucosaminuria

Viljami Sairanen, Anna Tokola, Ritva Tikkanen, Minna Laine, Taina Autti
2020 Brain Sciences  
Aspartylglucosaminuria (AGU) is a rare lysosomal storage disorder causing developmental delay, intellectual disability, and eventual death. A distinct feature in AGU is iron accumulation within the thalamus. Our aim is to demonstrate that susceptibility-weighted images (SWI) could be used as an MRI biomarker to evaluate the response within the AGU population to newly evolving treatments. SWI from 16 patients with AGU and 16 age-matched controls were used in the analysis. Thalamic volume with an
more » ... iron accumulation was identified using a permutation test. Group differences were investigated for both the complete thalamus and the iron accumulation regions. Group-wise age correlation within these volumes were assessed with analysis of variance and multivariate regression. We found a statistically significant and large difference (p-value = 0.01, Cohen's D = 0.97) for the whole thalamus comparison and an even greater difference in the iron accumulation regions (p-value < 0.01, Cohen's D = 3.52). Furthermore, we found strong evidence for iron accumulation as a linear function of age with R2 = 0.65 only for AGU. The statistical analysis of SWI provides tools for assessing the degree of iron accumulation. This method could be used to study the response to treatments, in that a successful treatment would be expected to result in a decline in iron accumulation.
doi:10.3390/brainsci10100677 pmid:32992453 pmcid:PMC7600807 fatcat:lnx2ejvebje4ba33vcga2h7npm

Fast qualitY conTrol meThod foR derIved diffUsion Metrics (YTTRIUM) in big data analysis: UK Biobank 18608 example [article]

Ivan Maximov, Dennis van der Meer, Ann-Marie de Lange, Tobias Kaufmann, Alexey Shadrin, Oleksandr Frei, Thomas Wolfers, Lars T. Westlye
2020 bioRxiv   pre-print
Viljami Sairanen for his help with FSL and slurm queue scripting.  ... 
doi:10.1101/2020.02.17.952697 fatcat:2nt74bczezam5hqiricojhd5va

Fast qualitY conTrol meThod foR derIved diffUsion Metrics (YTTRIUM) in big data analysis: U.K. Biobank 18,608 example

Ivan I Maximov, Dennis van der Meer, Ann-Marie G de Lange, Tobias Kaufmann, Alexey Shadrin, Oleksandr Frei, Thomas Wolfers, Lars T Westlye
2021 Human Brain Mapping  
Viljami Sairanen for his help with FSL and slurm queue scripting. ACKNOWLEDGEMENT  ... 
doi:10.1002/hbm.25424 pmid:33788350 pmcid:PMC8193531 fatcat:etjwmotr5rbfxegga7m3npmveq

Sparse source travel-time tomography of a laboratory target: accuracy and robustness of anomaly detection

S Pursiainen, M Kaasalainen
2014 Inverse Problems  
Thanks to Tapani Honkavaara, Viljami Sairanen, Janne Hirvonen, Arto Köliö, Jukka Piironen, Saku Suuriniemi, and Lauri Kettunen for their valuable help.  ... 
doi:10.1088/0266-5611/30/11/114016 fatcat:pwreos554rbkxhhj37uxiyyjua

An Automatic Image Processing Workflow for Daily Magnetic Resonance Imaging Quality Assurance

Juha I. Peltonen, Teemu Mäkelä, Alexey Sofiev, Eero Salli
2016 Journal of digital imaging  
Especially, Toni Ihalainen, Touko Kaasalainen, Linda Kuusela, Lauri Lehmonen, Nadja Lönnroth, Teemu Mäkelä, Viljami Sairanen, Alexey Sofiev, Marjut Timonen and Jouni Uusi-Simola have contributed significantly  ... 
doi:10.1007/s10278-016-9919-4 pmid:27834027 pmcid:PMC5359204 fatcat:mzipqg4emba5tdbn4j7hxezzmu