Filters








50 Hits in 0.77 sec

New insights into replication origin characteristics in metazoans

Christelle Cayrou, Philippe Coulombe, Aurore Puy, Stephanie Rialle, Noam Kaplan, Eran Segal, Marcel Méchali
<span title="2012-02-15">2012</span> <i title="Informa UK Limited"> <a target="_blank" rel="noopener" href="https://fatcat.wiki/container/3gs5rtni6zfcxheoel6opw4b3m" style="color: black;">Cell Cycle</a> </i> &nbsp;
W e recently reported the identification and characterization of DNA replication origins (Oris) in metazoan cell lines. Here, we describe additional bioinformatic analyses showing that the previously identified GC-rich sequence elements form origin G-rich repeated elements (OGREs) that are present in 67% to 90% of the DNA replication origins from Drosophila to human cells, respectively. Our analyses also show that initiation of DNA synthesis takes place precisely at 160 bp (Drosophila) and 280
more &raquo; ... p (mouse) from the OGRE. We also found that in most CpG islands, an OGRE is positioned in opposite orientation on each of the two DNA strands and detected two sites of initiation of DNA synthesis upstream or downstream of each OGRE. Conversely, Oris not associated with CpG islands have a single initiation site. OGRE density along chromosomes correlated with previously published replication timing data. Ori sequences centered on the OGRE are also predicted to have high intrinsic nucleosome occupancy. Finally, OGREs predict G-quadruplex structures at Oris that might be structural elements controlling the choice or activation of replication origins.
<span class="external-identifiers"> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.4161/cc.11.4.19097">doi:10.4161/cc.11.4.19097</a> <a target="_blank" rel="external noopener" href="https://www.ncbi.nlm.nih.gov/pubmed/22373526">pmid:22373526</a> <a target="_blank" rel="external noopener" href="https://pubmed.ncbi.nlm.nih.gov/PMC3318102/">pmcid:PMC3318102</a> <a target="_blank" rel="external noopener" href="https://fatcat.wiki/release/sgree2wvqnfrdirtyqeymmwu2y">fatcat:sgree2wvqnfrdirtyqeymmwu2y</a> </span>
<a target="_blank" rel="noopener" href="https://web.archive.org/web/20190304031933/http://pdfs.semanticscholar.org/bfd9/dd63ea50e85878b28b6b90c550fc03750982.pdf" title="fulltext PDF download" data-goatcounter-click="serp-fulltext" data-goatcounter-title="serp-fulltext"> <button class="ui simple right pointing dropdown compact black labeled icon button serp-button"> <i class="icon ia-icon"></i> Web Archive [PDF] <div class="menu fulltext-thumbnail"> <img src="https://blobs.fatcat.wiki/thumbnail/pdf/bf/d9/bfd9dd63ea50e85878b28b6b90c550fc03750982.180px.jpg" alt="fulltext thumbnail" loading="lazy"> </div> </button> </a> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.4161/cc.11.4.19097"> <button class="ui left aligned compact blue labeled icon button serp-button"> <i class="external alternate icon"></i> Publisher / doi.org </button> </a> <a target="_blank" rel="external noopener" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3318102" title="pubmed link"> <button class="ui compact blue labeled icon button serp-button"> <i class="file alternate outline icon"></i> pubmed.gov </button> </a>

Deciphering the wisent demographic and adaptive histories from individual whole-genome sequences [article]

Mathieu Gautier, Katayoun Moazami-Goudarzi, Leveziel Hubert, Hugues Parinello, Cecile Grohs, Stephanie Rialle, Rafal Kowalczyk, Laurence Flori
<span title="2016-06-12">2016</span> <i title="Cold Spring Harbor Laboratory"> bioRxiv </i> &nbsp; <span class="release-stage" >pre-print</span>
As the largest European herbivore, the wisent (Bison bonasus) is emblematic of the continent wildlife but has unclear origins. Here, we infer its demographic and adaptive histories from two individual whole genome sequences via a detailed comparative analysis with bovine genomes. We estimate that the wisent and bovine species diverged from 1.7x106to 850,000 YBP through a speciation process involving an extended period of limited gene flow. Our data further support the occurrence of more recent
more &raquo; ... econdary contacts, posterior to theBos taurusandBos indicusdivergence (ca. 150,000 YBP), between the wisent and (European) taurine cattle lineages. Although the wisent and bovine population sizes experienced a similar sharp decline since the Last Glacial Maximum, we find that the wisent demography remained more fluctuating during the Pleistocene. This is in agreement with a scenario in which wisents responded to successive glaciations by habitat fragmentation rather than southward and eastward migration as for the bovine ancestors. We finally detect 423 genes under positive selection between the wisent and bovine lineages, which shed a new light on the genome response to different living conditions (temperature, available food resource and pathogen exposure) and on the key gene functions altered by the domestication process.
<span class="external-identifiers"> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.1101/058446">doi:10.1101/058446</a> <a target="_blank" rel="external noopener" href="https://fatcat.wiki/release/ce24uqvrznfv5p7u7zsgnskphm">fatcat:ce24uqvrznfv5p7u7zsgnskphm</a> </span>
<a target="_blank" rel="noopener" href="https://web.archive.org/web/20190429110845/https://www.biorxiv.org/content/biorxiv/early/2016/06/12/058446.full.pdf" title="fulltext PDF download" data-goatcounter-click="serp-fulltext" data-goatcounter-title="serp-fulltext"> <button class="ui simple right pointing dropdown compact black labeled icon button serp-button"> <i class="icon ia-icon"></i> Web Archive [PDF] <div class="menu fulltext-thumbnail"> <img src="https://blobs.fatcat.wiki/thumbnail/pdf/fa/40/fa40492928a10abf1072cccfc7dba5ac1220e7f3.180px.jpg" alt="fulltext thumbnail" loading="lazy"> </div> </button> </a> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.1101/058446"> <button class="ui left aligned compact blue labeled icon button serp-button"> <i class="external alternate icon"></i> biorxiv.org </button> </a>

Regulatory Divergence between Parental Alleles Determines Gene Expression Patterns in Hybrids

Marie-Christine Combes, Yann Hueber, Alexis Dereeper, Stéphanie Rialle, Juan-Carlos Herrera, Philippe Lashermes
<span title="2015-03-29">2015</span> <i title="Oxford University Press (OUP)"> <a target="_blank" rel="noopener" href="https://fatcat.wiki/container/c3tk2qca4vdq5htca2effydqim" style="color: black;">Genome Biology and Evolution</a> </i> &nbsp;
Both hybridization and allopolyploidization generate novel phenotypes by conciliating divergent genomes and regulatory networks in the same cellular context. To understand the rewiring of gene expression in hybrids, the total expression of 21,025 genes and the allele-specific expression of over 11,000 genes were quantified in interspecific hybrids and their parental species, Coffea canephora and Coffea eugenioides using RNA-seq technology. Between parental species, cis-and trans-regulatory
more &raquo; ... gences affected around 32% and 35% of analyzed genes, respectively, with nearly 17% of them showing both. The relative importance of trans-regulatory divergences between both species could be related to their low genetic divergence and perennial habit. In hybrids, among divergently expressed genes between parental species and hybrids, 77% was expressed like one parent (expression level dominance), including 65% like C. eugenioides. Gene expression was shown to result from the expression of both alleles affected by intertwined parental trans-regulatory factors. A strong impact of C. eugenioides trans-regulatory factors on the upregulation of C. canephora alleles was revealed. The gene expression patterns appeared determined by complex combinations of cis-and trans-regulatory divergences. In particular, the observed biased expression level dominance seemed to be derived from the asymmetric effects of trans-regulatory parental factors on regulation of alleles. More generally, this study illustrates the effects of divergent trans-regulatory parental factors on the gene expression pattern in hybrids. The characteristics of the transcriptional response to hybridization appear to be determined by the compatibility of gene regulatory networks and therefore depend on genetic divergences between the parental species and their evolutionary history.
<span class="external-identifiers"> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.1093/gbe/evv057">doi:10.1093/gbe/evv057</a> <a target="_blank" rel="external noopener" href="https://www.ncbi.nlm.nih.gov/pubmed/25819221">pmid:25819221</a> <a target="_blank" rel="external noopener" href="https://pubmed.ncbi.nlm.nih.gov/PMC4419803/">pmcid:PMC4419803</a> <a target="_blank" rel="external noopener" href="https://fatcat.wiki/release/ullt7go4b5hurltc2xjyvrxabq">fatcat:ullt7go4b5hurltc2xjyvrxabq</a> </span>
<a target="_blank" rel="noopener" href="https://web.archive.org/web/20190228082431/http://pdfs.semanticscholar.org/9f4d/e7eaf232681baccc4a7783fcd595a1928ea3.pdf" title="fulltext PDF download" data-goatcounter-click="serp-fulltext" data-goatcounter-title="serp-fulltext"> <button class="ui simple right pointing dropdown compact black labeled icon button serp-button"> <i class="icon ia-icon"></i> Web Archive [PDF] <div class="menu fulltext-thumbnail"> <img src="https://blobs.fatcat.wiki/thumbnail/pdf/9f/4d/9f4de7eaf232681baccc4a7783fcd595a1928ea3.180px.jpg" alt="fulltext thumbnail" loading="lazy"> </div> </button> </a> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.1093/gbe/evv057"> <button class="ui left aligned compact blue labeled icon button serp-button"> <i class="unlock alternate icon" style="background-color: #fb971f;"></i> oup.com </button> </a> <a target="_blank" rel="external noopener" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4419803" title="pubmed link"> <button class="ui compact blue labeled icon button serp-button"> <i class="file alternate outline icon"></i> pubmed.gov </button> </a>

Deciphering the Wisent Demographic and Adaptive Histories from Individual Whole-Genome Sequences

Mathieu Gautier, Katayoun Moazami-Goudarzi, Hubert Levéziel, Hugues Parinello, Cécile Grohs, Stéphanie Rialle, Rafał Kowalczyk, Laurence Flori
<span title="2016-07-19">2016</span> <i title="Oxford University Press (OUP)"> <a target="_blank" rel="noopener" href="https://fatcat.wiki/container/4bimmtjdczetrfmnc3ijbmwpoy" style="color: black;">Molecular biology and evolution</a> </i> &nbsp;
As the largest European herbivore, the wisent (Bison bonasus) is emblematic of the continent wildlife but has unclear origins. Here, we infer its demographic and adaptive histories from two individual whole-genome sequences via a detailed comparative analysis with bovine genomes. We estimate that the wisent and bovine species diverged from 1.7 Â 10 6 to 850,000 years before present (YBP) through a speciation process involving an extended period of limited gene flow. Our data further support the
more &raquo; ... occurrence of more recent secondary contacts, posterior to the Bos taurus and Bos indicus divergence ($150,000 YBP), between the wisent and (European) taurine cattle lineages. Although the wisent and bovine population sizes experienced a similar sharp decline since the Last Glacial Maximum, we find that the wisent demography remained more fluctuating during the Pleistocene. This is in agreement with a scenario in which wisents responded to successive glaciations by habitat fragmentation rather than southward and eastward migration as for the bovine ancestors. We finally detect 423 genes under positive selection between the wisent and bovine lineages, which shed a new light on the genome response to different living conditions (temperature, available food resource, and pathogen exposure) and on the key gene functions altered by the domestication process.
<span class="external-identifiers"> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.1093/molbev/msw144">doi:10.1093/molbev/msw144</a> <a target="_blank" rel="external noopener" href="https://www.ncbi.nlm.nih.gov/pubmed/27436010">pmid:27436010</a> <a target="_blank" rel="external noopener" href="https://pubmed.ncbi.nlm.nih.gov/PMC5062319/">pmcid:PMC5062319</a> <a target="_blank" rel="external noopener" href="https://fatcat.wiki/release/2jsou6yvbbhozb7yuckshkeixi">fatcat:2jsou6yvbbhozb7yuckshkeixi</a> </span>
<a target="_blank" rel="noopener" href="https://web.archive.org/web/20180730080455/https://watermark.silverchair.com/msw144.pdf?token=AQECAHi208BE49Ooan9kkhW_Ercy7Dm3ZL_9Cf3qfKAc485ysgAAAaMwggGfBgkqhkiG9w0BBwagggGQMIIBjAIBADCCAYUGCSqGSIb3DQEHATAeBglghkgBZQMEAS4wEQQMEtk0IcT78BDEq2bBAgEQgIIBVmElwBSP0HVmU352ROa5358BVObd_fSErNff59puIM9SV0vB4n6rKHXr_73K-E1Mo714E9BQvUKLitk2HNk9zU77IzzjnL9IXbBaGOL-i6snVamaOUH3DGwb3xUiiqK_9xASolJepyu5zHKexxU12e69rXh0Eg3zpXIV6D-kvVwYJ3R-QE8AMI_-HD6Y1Wj2-36jtxRWYVPrx5qj5CdIIF2aLh17ridJwdln1jwtK4pk3xhV2ozcuqAItIi7eoKmEzbd5sYcwEtofwV9SxBO6__plpwtBuOrCSIlMx3QreX8Goo0CImcTbVrX2Qe1YQoj10wF6LRp0oirWsga9zW2bmkDmqHLfA77oMWR5rzxVCbAAJVgM7k9WKphRbh8axLaVWv_BUxG4Jd9pWSsySA0krZ3Y7zAAX8fDJRmiMdFWnQIBZ9zQg71pbOE6Q_tDl5vSkJaRY1jQ" title="fulltext PDF download" data-goatcounter-click="serp-fulltext" data-goatcounter-title="serp-fulltext"> <button class="ui simple right pointing dropdown compact black labeled icon button serp-button"> <i class="icon ia-icon"></i> Web Archive [PDF] <div class="menu fulltext-thumbnail"> <img src="https://blobs.fatcat.wiki/thumbnail/pdf/10/10/10108094ae7b48fc786de317707dd38b68687f02.180px.jpg" alt="fulltext thumbnail" loading="lazy"> </div> </button> </a> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.1093/molbev/msw144"> <button class="ui left aligned compact blue labeled icon button serp-button"> <i class="external alternate icon"></i> oup.com </button> </a> <a target="_blank" rel="external noopener" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5062319" title="pubmed link"> <button class="ui compact blue labeled icon button serp-button"> <i class="file alternate outline icon"></i> pubmed.gov </button> </a>

Transcriptional Profiling of Cutaneous MRGPRD Free Nerve Endings and C-LTMRs

Ana Reynders, Annabelle Mantilleri, Pascale Malapert, Stéphanie Rialle, Sabine Nidelet, Sophie Laffray, Corinne Beurrier, Emmanuel Bourinet, Aziz Moqrich
<span title="2015-02-13">2015</span> <i title="Elsevier BV"> <a target="_blank" rel="noopener" href="https://fatcat.wiki/container/5ihveavyobfs3mlzee7cjt7mfe" style="color: black;">Cell Reports</a> </i> &nbsp;
Cutaneous C-unmyelinated MRGPRD+ free nerve endings and C-LTMRs innervating hair follicles convey two opposite aspects of touch sensation: a sensation of pain and a sensation of pleasant touch. The molecular mechanisms underlying these diametrically opposite functions are unknown. Here, we used a mouse model that genetically marks C-LTMRs and MRGPRD+ neurons in combination with fluorescent cell surface labeling, flow cytometry, and RNA deep-sequencing technology (RNA-seq). Cluster analysis of
more &raquo; ... A-seq profiles of the purified neuronal subsets revealed 486 and 549 genes differentially expressed in MRGPRD-expressing neurons and C-LTMRs, respectively. We validated 48 MRGPD- and 68 C-LTMRs-enriched genes using a triple-staining approach, and the Cav3.3 channel, found to be exclusively expressed in C-LTMRs, was validated using electrophysiology. Our study greatly expands the molecular characterization of C-LTMRs and suggests that this particular population of neurons shares some molecular features with Aβ and Aδ low-threshold mechanoreceptors.
<span class="external-identifiers"> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.1016/j.celrep.2015.01.022">doi:10.1016/j.celrep.2015.01.022</a> <a target="_blank" rel="external noopener" href="https://www.ncbi.nlm.nih.gov/pubmed/25683706">pmid:25683706</a> <a target="_blank" rel="external noopener" href="https://pubmed.ncbi.nlm.nih.gov/PMC4542317/">pmcid:PMC4542317</a> <a target="_blank" rel="external noopener" href="https://fatcat.wiki/release/y7ufqwrvzveflnsis6mbr3i6ee">fatcat:y7ufqwrvzveflnsis6mbr3i6ee</a> </span>
<a target="_blank" rel="noopener" href="https://web.archive.org/web/20190428042543/https://hal-amu.archives-ouvertes.fr/hal-01219864/document" title="fulltext PDF download" data-goatcounter-click="serp-fulltext" data-goatcounter-title="serp-fulltext"> <button class="ui simple right pointing dropdown compact black labeled icon button serp-button"> <i class="icon ia-icon"></i> Web Archive [PDF] <div class="menu fulltext-thumbnail"> <img src="https://blobs.fatcat.wiki/thumbnail/pdf/e0/f5/e0f537a2651c2536ca63980c36b1a7b95a01f58e.180px.jpg" alt="fulltext thumbnail" loading="lazy"> </div> </button> </a> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.1016/j.celrep.2015.01.022"> <button class="ui left aligned compact blue labeled icon button serp-button"> <i class="unlock alternate icon" style="background-color: #fb971f;"></i> elsevier.com </button> </a> <a target="_blank" rel="external noopener" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4542317" title="pubmed link"> <button class="ui compact blue labeled icon button serp-button"> <i class="file alternate outline icon"></i> pubmed.gov </button> </a>

Differential immune gene expression associated with contemporary range expansion of two invasive rodents in Senegal [article]

Nathalie Charbonnel, Maxime Galan, Caroline Tatard, Anne Loiseau, Christophe Amidi Diagne, Ambroise Dalecky, Hugues Parrinello, Stephanie Rialle, Dany Severac, Carine Brouat
<span title="2018-10-13">2018</span> <i title="Cold Spring Harbor Laboratory"> bioRxiv </i> &nbsp; <span class="release-stage" >pre-print</span>
Biological invasions are major anthropogenic changes associated with threats to biodiversity and health. What determines the successful establishment of introduced populations still remains unsolved. Here we explore the appealing assertion that invasion success relies on immune phenotypic traits that would be advantageous in recently invaded sites. Results: We compared gene expression profiles between anciently and recently established populations of two major invading species, the house mouse
more &raquo; ... us musculus domesticus and the black rat Rattus rattus, in Senegal. Transcriptome analyses revealed respectively 364 and 83 differentially expressed genes along the mouse and rat invasion routes. Among them, 20.0% and 10.6% were annotated with functions related to immunity. All immune-related genes detected along the mouse invasion route were over-expressed in recently invaded sites. Genes of the complement activation pathway were over-represented. Results were less straightforward when considering the black rat as no particular immunological process was over-represented. Conclusions: We revealed changes in transcriptome profiles along invasion routes. Patterns differed between both invasive species. These changes potentially be driven by increased infection risks in recently invaded sites for the house mouse and stochastic events associated with colonization history for the black rat. These results provide a first step in identifying the immune ecoevolutionary processes potentially involved in invasion success.
<span class="external-identifiers"> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.1101/442160">doi:10.1101/442160</a> <a target="_blank" rel="external noopener" href="https://fatcat.wiki/release/l6gaiv4mm5he3ptilr63dhkuwe">fatcat:l6gaiv4mm5he3ptilr63dhkuwe</a> </span>
<a target="_blank" rel="noopener" href="https://web.archive.org/web/20190502164839/https://www.biorxiv.org/content/biorxiv/early/2019/02/19/442160.full.pdf" title="fulltext PDF download" data-goatcounter-click="serp-fulltext" data-goatcounter-title="serp-fulltext"> <button class="ui simple right pointing dropdown compact black labeled icon button serp-button"> <i class="icon ia-icon"></i> Web Archive [PDF] <div class="menu fulltext-thumbnail"> <img src="https://blobs.fatcat.wiki/thumbnail/pdf/2b/d3/2bd32b1ea0e0b9ba2e328a95141d158c6f4bef6b.180px.jpg" alt="fulltext thumbnail" loading="lazy"> </div> </button> </a> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.1101/442160"> <button class="ui left aligned compact blue labeled icon button serp-button"> <i class="external alternate icon"></i> biorxiv.org </button> </a>

BioNetCAD: design, simulation and experimental validation of synthetic biochemical networks

Stéphanie Rialle, Liza Felicori, Camila Dias-Lopes, Sabine Pérès, Sanaâ El Atia, Alain R. Thierry, Patrick Amar, Franck Molina
<span title="2010-07-13">2010</span> <i title="Oxford University Press (OUP)"> <a target="_blank" rel="noopener" href="https://fatcat.wiki/container/4r72gbmtcrde5no3fwwogjs3cu" style="color: black;">Computer applications in the biosciences : CABIOS</a> </i> &nbsp;
Motivation: Synthetic biology studies how to design and construct biological systems with functions that do not exist in nature. Biochemical networks, although easier to control, have been used less frequently than genetic networks as a base to build a synthetic system. To date, no clear engineering principles exist to design such cell-free biochemical networks. Results: We describe a methodology for the construction of synthetic biochemical networks based on three main steps: design,
more &raquo; ... and experimental validation. We developed BioNetCAD to help users to go through these steps. BioNetCAD allows designing abstract networks that can be implemented thanks to CompuBioTicDB, a database of parts for synthetic biology. BioNetCAD enables also simulations with the HSim software and the classical Ordinary Differential Equations (ODE). We demonstrate with a case study that BioNetCAD can rationalize and reduce further experimental validation during the construction of a biochemical network.
<span class="external-identifiers"> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.1093/bioinformatics/btq409">doi:10.1093/bioinformatics/btq409</a> <a target="_blank" rel="external noopener" href="https://www.ncbi.nlm.nih.gov/pubmed/20628073">pmid:20628073</a> <a target="_blank" rel="external noopener" href="https://pubmed.ncbi.nlm.nih.gov/PMC2935418/">pmcid:PMC2935418</a> <a target="_blank" rel="external noopener" href="https://fatcat.wiki/release/jkdaga2qvbejjhh47iuhszjc2i">fatcat:jkdaga2qvbejjhh47iuhszjc2i</a> </span>
<a target="_blank" rel="noopener" href="https://web.archive.org/web/20200210211925/http://europepmc.org/backend/ptpmcrender.fcgi?accid=PMC2935418&amp;blobtype=pdf" title="fulltext PDF download" data-goatcounter-click="serp-fulltext" data-goatcounter-title="serp-fulltext"> <button class="ui simple right pointing dropdown compact black labeled icon button serp-button"> <i class="icon ia-icon"></i> Web Archive [PDF] <div class="menu fulltext-thumbnail"> <img src="https://blobs.fatcat.wiki/thumbnail/pdf/01/6f/016fcb3bf7821eb0c316e82bd506102aa67f8cf3.180px.jpg" alt="fulltext thumbnail" loading="lazy"> </div> </button> </a> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.1093/bioinformatics/btq409"> <button class="ui left aligned compact blue labeled icon button serp-button"> <i class="external alternate icon"></i> oup.com </button> </a> <a target="_blank" rel="external noopener" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2935418" title="pubmed link"> <button class="ui compact blue labeled icon button serp-button"> <i class="file alternate outline icon"></i> pubmed.gov </button> </a>

Differential immune gene expression associated with contemporary range expansion in two invasive rodents in Senegal

Nathalie Charbonnel, Maxime Galan, Caroline Tatard, Anne Loiseau, Christophe Diagne, Ambroise Dalecky, Hugues Parrinello, Stephanie Rialle, Dany Severac, Carine Brouat
<span title="2020-10-26">2020</span> <i title="Springer Science and Business Media LLC"> <a target="_blank" rel="noopener" href="https://fatcat.wiki/container/tnqhc2x2aneavcd3gx5h7mswhm" style="color: black;">Scientific Reports</a> </i> &nbsp;
Biological invasions are major anthropogenic changes associated with threats to biodiversity and health. However, what determines the successful establishment and spread of introduced populations remains unclear. Here, we explore several hypotheses linking invasion success and immune phenotype traits, including those based on the evolution of increased competitive ability concept. We compared gene expression profiles between anciently and recently established populations of two major invading
more &raquo; ... ecies, the house mouse Mus musculus domesticus and the black rat Rattus rattus, in Senegal (West Africa). Transcriptome analyses identified differential expression between anciently and recently established populations for 364 mouse genes and 83 rat genes. All immune-related genes displaying differential expression along the mouse invasion route were overexpressed at three of the four recently invaded sites studied. Complement activation pathway genes were overrepresented among these genes. By contrast, no particular immunological process was found to be overrepresented among the differentially expressed genes of black rat. Changes in transcriptome profiles were thus observed along invasion routes, but with different specific patterns between the two invasive species. These changes may be driven by increases in infection risks at sites recently invaded by the house mouse, and by stochastic events associated with colonization history for the black rat. These results constitute a first step toward the identification of immune eco-evolutionary processes potentially involved in the invasion success of these two rodent species.
<span class="external-identifiers"> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.1038/s41598-020-75060-2">doi:10.1038/s41598-020-75060-2</a> <a target="_blank" rel="external noopener" href="https://www.ncbi.nlm.nih.gov/pubmed/33106535">pmid:33106535</a> <a target="_blank" rel="external noopener" href="https://fatcat.wiki/release/7r5uwk6oyzgjljq2cuhisutq5q">fatcat:7r5uwk6oyzgjljq2cuhisutq5q</a> </span>
<a target="_blank" rel="noopener" href="https://web.archive.org/web/20210429091506/https://www.nature.com/articles/s41598-020-75060-2.pdf?error=cookies_not_supported&amp;code=8d6be3c9-c94c-4c4a-893b-d7ee90498989" title="fulltext PDF download" data-goatcounter-click="serp-fulltext" data-goatcounter-title="serp-fulltext"> <button class="ui simple right pointing dropdown compact black labeled icon button serp-button"> <i class="icon ia-icon"></i> Web Archive [PDF] <div class="menu fulltext-thumbnail"> <img src="https://blobs.fatcat.wiki/thumbnail/pdf/e2/b9/e2b980c364a8b511906e0b842bb1505a1853465b.180px.jpg" alt="fulltext thumbnail" loading="lazy"> </div> </button> </a> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.1038/s41598-020-75060-2"> <button class="ui left aligned compact blue labeled icon button serp-button"> <i class="unlock alternate icon" style="background-color: #fb971f;"></i> Publisher / doi.org </button> </a>

In Vitro Corticogenesis from Embryonic Stem Cells Recapitulates the In Vivo Epigenetic Control of Imprinted Gene Expression

Tristan Bouschet, Emeric Dubois, Christelle Reynès, Satya K. Kota, Stéphanie Rialle, Stéphanie Maupetit-Méhouas, Mikael Pezet, Anne Le Digarcher, Sabine Nidelet, Vincent Demolombe, Patricia Cavelier, Céline Meusnier (+6 others)
<span title="2016-04-19">2016</span> <i title="Oxford University Press (OUP)"> <a target="_blank" rel="noopener" href="https://fatcat.wiki/container/eeg67t2wzfd3dpiicxsttg3cxi" style="color: black;">Cerebral Cortex</a> </i> &nbsp;
In vitro corticogenesis from embryonic stem cells (ESCs) is an attractive model of cortical development and a promising tool for cortical therapy. It is unknown to which extent epigenetic mechanisms crucial for cortex development and function, such as parental genomic imprinting, are recapitulated by in vitro corticogenesis. Here, using genome-wide transcriptomic and methylation analyses on hybrid mouse tissues and cells, we find a high concordance of imprinting status between in vivo and
more &raquo; ... rived cortices. Notably, in vitro corticogenesis strictly reproduced the in vivo parent-of-origin-dependent expression of 41 imprinted genes (IGs), including Mest and Cdkn1c known to control corticogenesis. Parent-of-origin-dependent DNA methylation was also conserved at 14 of 18 imprinted differentially methylated regions. The least concordant imprinted locus was Gpr1-Zdbf2, where the aberrant bi-allelic expression of Zdbf2 and Adam23 was concomitant with a gain of methylation on the maternal allele in vitro. Combined, our data argue for a broad conservation of the epigenetic mechanisms at imprinted loci in cortical cells derived from ESCs. We propose that in vitro corticogenesis helps to define the still poorly understood mechanisms that regulate imprinting in the brain and the roles of IGs in cortical development.
<span class="external-identifiers"> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.1093/cercor/bhw102">doi:10.1093/cercor/bhw102</a> <a target="_blank" rel="external noopener" href="https://www.ncbi.nlm.nih.gov/pubmed/27095822">pmid:27095822</a> <a target="_blank" rel="external noopener" href="https://fatcat.wiki/release/77dyjwfm7vg3zpgykg6bm3pioy">fatcat:77dyjwfm7vg3zpgykg6bm3pioy</a> </span>
<a target="_blank" rel="noopener" href="https://web.archive.org/web/20210716003258/https://hal.umontpellier.fr/hal-01788685/file/bhw102.pdf" title="fulltext PDF download" data-goatcounter-click="serp-fulltext" data-goatcounter-title="serp-fulltext"> <button class="ui simple right pointing dropdown compact black labeled icon button serp-button"> <i class="icon ia-icon"></i> Web Archive [PDF] <div class="menu fulltext-thumbnail"> <img src="https://blobs.fatcat.wiki/thumbnail/pdf/14/ec/14ec07600ca8e848285c929d8d3d020c5d490c37.180px.jpg" alt="fulltext thumbnail" loading="lazy"> </div> </button> </a> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.1093/cercor/bhw102"> <button class="ui left aligned compact blue labeled icon button serp-button"> <i class="external alternate icon"></i> oup.com </button> </a>

Neural stem cell-encoded temporal patterning delineates an early window of malignant susceptibility in Drosophila

Karine Narbonne-Reveau, Elodie Lanet, Caroline Dillard, Sophie Foppolo, Ching-Huan Chen, Hugues Parrinello, Stéphanie Rialle, Nicholas S Sokol, Cédric Maurange
<span title="2016-06-14">2016</span> <i title="eLife Sciences Publications, Ltd"> <a target="_blank" rel="noopener" href="https://fatcat.wiki/container/en4qj5ijrbf5djxx7p5zzpjyoq" style="color: black;">eLife</a> </i> &nbsp;
Pediatric neural tumors are often initiated during early development and can undergo very rapid transformation. However, the molecular basis of this early malignant susceptibility remains unknown. During Drosophila development, neural stem cells (NSCs) divide asymmetrically and generate intermediate progenitors that rapidly differentiate in neurons. Upon gene inactivation, these progeny can dedifferentiate and generate malignant tumors. Here, we find that intermediate progenitors are prone to
more &raquo; ... lignancy only when born during an early window of development while expressing the transcription factor Chinmo, and the mRNA-binding proteins Imp/IGF2BP and Lin-28. These genes compose an oncogenic module that is coopted upon dedifferentiation of early-born intermediate progenitors to drive unlimited tumor growth. In late larvae, temporal transcription factor progression in NSCs silences the module, thereby limiting mitotic potential and terminating the window of malignant susceptibility. Thus, this study identifies the gene regulatory network that confers malignant potential to neural tumors with early developmental origins.
<span class="external-identifiers"> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.7554/elife.13463">doi:10.7554/elife.13463</a> <a target="_blank" rel="external noopener" href="https://www.ncbi.nlm.nih.gov/pubmed/27296804">pmid:27296804</a> <a target="_blank" rel="external noopener" href="https://pubmed.ncbi.nlm.nih.gov/PMC4907696/">pmcid:PMC4907696</a> <a target="_blank" rel="external noopener" href="https://fatcat.wiki/release/gmj7eool2feupd5e5i7y2ss22a">fatcat:gmj7eool2feupd5e5i7y2ss22a</a> </span>
<a target="_blank" rel="noopener" href="https://web.archive.org/web/20170921203733/https://cdn.elifesciences.org/articles/13463/elife-13463-v1.pdf" title="fulltext PDF download" data-goatcounter-click="serp-fulltext" data-goatcounter-title="serp-fulltext"> <button class="ui simple right pointing dropdown compact black labeled icon button serp-button"> <i class="icon ia-icon"></i> Web Archive [PDF] <div class="menu fulltext-thumbnail"> <img src="https://blobs.fatcat.wiki/thumbnail/pdf/b2/8e/b28e46136cec62bb4324d9890ddae971a8863a4d.180px.jpg" alt="fulltext thumbnail" loading="lazy"> </div> </button> </a> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.7554/elife.13463"> <button class="ui left aligned compact blue labeled icon button serp-button"> <i class="unlock alternate icon" style="background-color: #fb971f;"></i> elifesciences.com </button> </a> <a target="_blank" rel="external noopener" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4907696" title="pubmed link"> <button class="ui compact blue labeled icon button serp-button"> <i class="file alternate outline icon"></i> pubmed.gov </button> </a>

AMPK/HuR-Driven IL-20 Post-Transcriptional Regulation in Psoriatic Skin

Geneviève Garcin, Isabelle Guiraud, Matthieu Lacroix, Clémence Genthon, Stéphanie Rialle, Jean-Marie Joujoux, Laurent Meunier, Thierry Lavabre-Bertrand, Pierre-Emmanuel Stoebner, Lionel Le Gallic
<span title="">2015</span> <i title="Elsevier BV"> <a target="_blank" rel="noopener" href="https://fatcat.wiki/container/hxva2c3v7rgxffw6x5wzadfdrm" style="color: black;">Journal of Investigative Dermatology</a> </i> &nbsp;
IL-20 is involved in the development of skin psoriasis. The molecular mechanisms underlying IL-20 overexpression in psoriatic epidermis remain to be elucidated. We showed that IL-20 was primarily upregulated in psoriatic skin at the post-transcriptional level. The RNA-binding protein HuR relocalized to the cytoplasm of keratinocytes (KCs) of psoriatic patients, suggesting that it stabilizes numerous transcripts, as observed in the human KC cell lines used to assess IL-20 mRNA. We characterized
more &raquo; ... pidermal HuR RNA targets in psoriatic skin using ribonucleoprotein immunoprecipitation analyzed via high-throughput sequencing. Numerous transcripts that are upregulated in psoriasis were targeted by HuR, supporting the participation of HuR in pathogenic processes such as morphological changes, innate and adaptive immune responses, and metabolic inflammatory responses. Finally, we identified the metabolic sensor AMP-activated protein kinase (AMPK) as being responsible for HuR cytoplasmic relocalization because its activity was severely impaired in human psoriatic epidermis, and in vivo drug-mediated AMPK inhibition in mouse epidermis promoted HuR cytoplasmic localization, IL-20 overproduction, acanthosis, and hyperkeratosis. These results provide insights into the molecular links between metabolism and post-transcriptional networks during chronic inflammation.
<span class="external-identifiers"> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.1038/jid.2015.282">doi:10.1038/jid.2015.282</a> <a target="_blank" rel="external noopener" href="https://www.ncbi.nlm.nih.gov/pubmed/26176762">pmid:26176762</a> <a target="_blank" rel="external noopener" href="https://fatcat.wiki/release/bnlk7bcwrfaypj3zf76kiw5l4a">fatcat:bnlk7bcwrfaypj3zf76kiw5l4a</a> </span>
<a target="_blank" rel="noopener" href="https://web.archive.org/web/20170929153355/http://publisher-connector.core.ac.uk/resourcesync/data/elsevier/pdf/7d3/aHR0cDovL2FwaS5lbHNldmllci5jb20vY29udGVudC9hcnRpY2xlL3BpaS9zMDAyMjIwMngxNTQxODYwMw%3D%3D.pdf" title="fulltext PDF download" data-goatcounter-click="serp-fulltext" data-goatcounter-title="serp-fulltext"> <button class="ui simple right pointing dropdown compact black labeled icon button serp-button"> <i class="icon ia-icon"></i> Web Archive [PDF] <div class="menu fulltext-thumbnail"> <img src="https://blobs.fatcat.wiki/thumbnail/pdf/ef/61/ef61091b853463c449d0486c3dd0b03a14cd872a.180px.jpg" alt="fulltext thumbnail" loading="lazy"> </div> </button> </a> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.1038/jid.2015.282"> <button class="ui left aligned compact blue labeled icon button serp-button"> <i class="external alternate icon"></i> Publisher / doi.org </button> </a>

Comparative Genomics of Glossina palpalis gambiensis and G. morsitans morsitans to Reveal Gene Orthologs Involved in Infection by Trypanosoma brucei gambiense

Illiassou Hamidou Soumana, Bernadette Tchicaya, Stéphanie Rialle, Hugues Parrinello, Anne Geiger
<span title="2017-04-03">2017</span> <i title="Frontiers Media SA"> <a target="_blank" rel="noopener" href="https://fatcat.wiki/container/67anf6qgandy5adz4rakospiuq" style="color: black;">Frontiers in Microbiology</a> </i> &nbsp;
Blood-feeding Glossina palpalis gambiense (Gpg) fly transmits the single-celled eukaryotic parasite Trypanosoma brucei gambiense (Tbg), the second Glossina fly African trypanosome pair being Glossina morsitans/T.brucei rhodesiense. Whatever the T. brucei subspecies, whereas the onset of their developmental program in the zoo-anthropophilic blood feeding flies does unfold in the fly midgut, its completion is taking place in the fly salivary gland where does emerge a low size metacyclic
more &raquo; ... gote population displaying features that account for its establishment in mammals-human individuals included. Considering that the two Glossina-T. brucei pairs introduced above share similarity with respect to the developmental program of this African parasite, we were curious to map on the Glossina morsitans morsitans (Gmm), the Differentially Expressed Genes (DEGs) we listed in a previous study. Briefly, using the gut samples collected at days 3, 10, and 20 from Gpg that were fed or not at day 0 on Tbg-hosting mice, these DGE lists were obtained from RNA seqbased approaches. Here, post the mapping on the quality controlled DEGs on the Gmm genome, the identified ortholog genes were further annotated, the resulting datasets being compared. Around 50% of the Gpg DEGs were shown to have orthologs in the Gmm genome. Under one of the three Glossina midgut sampling conditions, the number of DEGs was even higher when mapping on the Gmm genome than initially recorded. Many Gmm genes annotated as "Hypothetical" were mapped and annotated on many distinct databases allowing some of them to be properly identified. We identify Glossina fly candidate genes encoding (a) a broad panel of proteases as well as (b) chitin-binding proteins, (c) antimicrobial peptide production-Pro3 protein, transferrin, mucin, atttacin, cecropin, etc-to further select in functional studies, the objectives being to probe and validated fly genome manipulation that prevents the onset of the developmental program of one or the other T. brucei spp. stumpy form sampled by one of the other bloodfeeding Glossina subspecies.
<span class="external-identifiers"> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.3389/fmicb.2017.00540">doi:10.3389/fmicb.2017.00540</a> <a target="_blank" rel="external noopener" href="https://www.ncbi.nlm.nih.gov/pubmed/28421044">pmid:28421044</a> <a target="_blank" rel="external noopener" href="https://pubmed.ncbi.nlm.nih.gov/PMC5376623/">pmcid:PMC5376623</a> <a target="_blank" rel="external noopener" href="https://fatcat.wiki/release/os2xoxtbyngrhln7aftzyzziw4">fatcat:os2xoxtbyngrhln7aftzyzziw4</a> </span>
<a target="_blank" rel="noopener" href="https://web.archive.org/web/20200506010326/https://hal.umontpellier.fr/hal-02506528/document" title="fulltext PDF download" data-goatcounter-click="serp-fulltext" data-goatcounter-title="serp-fulltext"> <button class="ui simple right pointing dropdown compact black labeled icon button serp-button"> <i class="icon ia-icon"></i> Web Archive [PDF] <div class="menu fulltext-thumbnail"> <img src="https://blobs.fatcat.wiki/thumbnail/pdf/85/bf/85bfed260b065c09e06b74914e2ff0d01f1d60bd.180px.jpg" alt="fulltext thumbnail" loading="lazy"> </div> </button> </a> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.3389/fmicb.2017.00540"> <button class="ui left aligned compact blue labeled icon button serp-button"> <i class="unlock alternate icon" style="background-color: #fb971f;"></i> frontiersin.org </button> </a> <a target="_blank" rel="external noopener" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5376623" title="pubmed link"> <button class="ui compact blue labeled icon button serp-button"> <i class="file alternate outline icon"></i> pubmed.gov </button> </a>

Cell Type-Specific mRNA Dysregulation in Hippocampal CA1 Pyramidal Neurons of the Fragile X Syndrome Mouse Model

Laura Ceolin, Nathalie Bouquier, Jihane Vitre-Boubaker, Stéphanie Rialle, Dany Severac, Emmanuel Valjent, Julie Perroy, Emma Puighermanal
<span title="2017-10-20">2017</span> <i title="Frontiers Media SA"> <a target="_blank" rel="noopener" href="https://fatcat.wiki/container/uc7xbcwzljashhncrlsxupx3em" style="color: black;">Frontiers in Molecular Neuroscience</a> </i> &nbsp;
Copyright © 2017 Ceolin, Bouquier, Vitre-Boubaker, Rialle, Severac, Valjent, Perroy and Puighermanal.  ... 
<span class="external-identifiers"> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.3389/fnmol.2017.00340">doi:10.3389/fnmol.2017.00340</a> <a target="_blank" rel="external noopener" href="https://www.ncbi.nlm.nih.gov/pubmed/29104533">pmid:29104533</a> <a target="_blank" rel="external noopener" href="https://pubmed.ncbi.nlm.nih.gov/PMC5655025/">pmcid:PMC5655025</a> <a target="_blank" rel="external noopener" href="https://fatcat.wiki/release/zju4dh5tl5gnvl54ngodbirbpm">fatcat:zju4dh5tl5gnvl54ngodbirbpm</a> </span>
<a target="_blank" rel="noopener" href="https://web.archive.org/web/20190220193552/http://pdfs.semanticscholar.org/288d/ad1cc07d4c13c862e7d1fa1d6d8956b7f32e.pdf" title="fulltext PDF download" data-goatcounter-click="serp-fulltext" data-goatcounter-title="serp-fulltext"> <button class="ui simple right pointing dropdown compact black labeled icon button serp-button"> <i class="icon ia-icon"></i> Web Archive [PDF] <div class="menu fulltext-thumbnail"> <img src="https://blobs.fatcat.wiki/thumbnail/pdf/28/8d/288dad1cc07d4c13c862e7d1fa1d6d8956b7f32e.180px.jpg" alt="fulltext thumbnail" loading="lazy"> </div> </button> </a> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.3389/fnmol.2017.00340"> <button class="ui left aligned compact blue labeled icon button serp-button"> <i class="unlock alternate icon" style="background-color: #fb971f;"></i> frontiersin.org </button> </a> <a target="_blank" rel="external noopener" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5655025" title="pubmed link"> <button class="ui compact blue labeled icon button serp-button"> <i class="file alternate outline icon"></i> pubmed.gov </button> </a>

Transcriptome Profiles of Nod Factor-independent Symbiosis in the Tropical Legume Aeschynomene evenia

Djamel Gully, Pierre Czernic, Stéphane Cruveiller, Frédéric Mahé, Cyrille Longin, David Vallenet, Philippe François, Sabine Nidelet, Stéphanie Rialle, Eric Giraud, Jean-François Arrighi, Maitrayee DasGupta (+1 others)
<span title="2018-07-19">2018</span> <i title="Springer Nature"> <a target="_blank" rel="noopener" href="https://fatcat.wiki/container/tnqhc2x2aneavcd3gx5h7mswhm" style="color: black;">Scientific Reports</a> </i> &nbsp;
<span class="external-identifiers"> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.1038/s41598-018-29301-0">doi:10.1038/s41598-018-29301-0</a> <a target="_blank" rel="external noopener" href="https://www.ncbi.nlm.nih.gov/pubmed/30026595">pmid:30026595</a> <a target="_blank" rel="external noopener" href="https://pubmed.ncbi.nlm.nih.gov/PMC6053390/">pmcid:PMC6053390</a> <a target="_blank" rel="external noopener" href="https://fatcat.wiki/release/lvekqa6prbckteuswsx2bwnxiy">fatcat:lvekqa6prbckteuswsx2bwnxiy</a> </span>
<a target="_blank" rel="noopener" href="https://web.archive.org/web/20200506032703/https://hal.umontpellier.fr/hal-02506906/file/s41598-018-29301-0.pdf" title="fulltext PDF download" data-goatcounter-click="serp-fulltext" data-goatcounter-title="serp-fulltext"> <button class="ui simple right pointing dropdown compact black labeled icon button serp-button"> <i class="icon ia-icon"></i> Web Archive [PDF] <div class="menu fulltext-thumbnail"> <img src="https://blobs.fatcat.wiki/thumbnail/pdf/0e/22/0e227a9c42c06bda6b9c124d825a0d3b356f0cdc.180px.jpg" alt="fulltext thumbnail" loading="lazy"> </div> </button> </a> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.1038/s41598-018-29301-0"> <button class="ui left aligned compact blue labeled icon button serp-button"> <i class="unlock alternate icon" style="background-color: #fb971f;"></i> Publisher / doi.org </button> </a> <a target="_blank" rel="external noopener" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6053390" title="pubmed link"> <button class="ui compact blue labeled icon button serp-button"> <i class="file alternate outline icon"></i> pubmed.gov </button> </a>

Integrator complex regulates NELF-mediated RNA polymerase II pause/release and processivity at coding genes

Bernd Stadelmayer, Gaël Micas, Adrien Gamot, Pascal Martin, Nathalie Malirat, Slavik Koval, Raoul Raffel, Bijan Sobhian, Dany Severac, Stéphanie Rialle, Hugues Parrinello, Olivier Cuvier (+1 others)
<span title="2014-11-20">2014</span> <i title="Springer Nature"> <a target="_blank" rel="noopener" href="https://fatcat.wiki/container/a4wan6l5o5dfzn767kyz7jqevi" style="color: black;">Nature Communications</a> </i> &nbsp;
RNA polymerase II (RNAPII) pausing/termination shortly after initiation is a hallmark of gene regulation. Here, we show that negative elongation factor (NELF) interacts with Integrator complex subunits (INTScom), RNAPII and Spt5. The interaction between NELF and INTScom subunits is RNA and DNA independent. Using both human immunodeficiency virus type 1 promoter and genome-wide analyses, we demonstrate that Integrator subunits specifically control NELF-mediated RNAPII pause/release at coding
more &raquo; ... s. The strength of RNAPII pausing is determined by the nature of the NELF-associated INTScom subunits. Interestingly, in addition to controlling RNAPII pause-release INTS11 catalytic subunit of the INTScom is required for RNAPII processivity. Finally, INTScom target genes are enriched in human immunodeficiency virus type 1 transactivation response element/NELF binding element and in a 3' box sequence required for small nuclear RNA biogenesis. Revealing these unexpected functions of INTScom in regulating RNAPII pause-release and completion of mRNA synthesis of NELF-target genes will contribute to our understanding of the gene expression cycle.
<span class="external-identifiers"> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.1038/ncomms6531">doi:10.1038/ncomms6531</a> <a target="_blank" rel="external noopener" href="https://www.ncbi.nlm.nih.gov/pubmed/25410209">pmid:25410209</a> <a target="_blank" rel="external noopener" href="https://pubmed.ncbi.nlm.nih.gov/PMC4263189/">pmcid:PMC4263189</a> <a target="_blank" rel="external noopener" href="https://fatcat.wiki/release/txeokybkfjdf3e27povapmvpw4">fatcat:txeokybkfjdf3e27povapmvpw4</a> </span>
<a target="_blank" rel="noopener" href="https://web.archive.org/web/20170922065219/http://www.nature.com/articles/ncomms6531.pdf" title="fulltext PDF download" data-goatcounter-click="serp-fulltext" data-goatcounter-title="serp-fulltext"> <button class="ui simple right pointing dropdown compact black labeled icon button serp-button"> <i class="icon ia-icon"></i> Web Archive [PDF] <div class="menu fulltext-thumbnail"> <img src="https://blobs.fatcat.wiki/thumbnail/pdf/b2/35/b235bc93d95cafc859139c17a9fa95230dccc211.180px.jpg" alt="fulltext thumbnail" loading="lazy"> </div> </button> </a> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.1038/ncomms6531"> <button class="ui left aligned compact blue labeled icon button serp-button"> <i class="unlock alternate icon" style="background-color: #fb971f;"></i> nature.com </button> </a> <a target="_blank" rel="external noopener" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4263189" title="pubmed link"> <button class="ui compact blue labeled icon button serp-button"> <i class="file alternate outline icon"></i> pubmed.gov </button> </a>
&laquo; Previous Showing results 1 &mdash; 15 out of 50 results