Filters








143,886 Hits in 5.9 sec

Signal Clustering with Class-independent Segmentation [article]

Stefano Gasperini, Magdalini Paschali, Carsten Hopke, David Wittmann, Nassir Navab
<span title="2019-11-18">2019</span> <i > arXiv </i> &nbsp; <span class="release-stage" >pre-print</span>
In this paper we propose a Deep Learning-based clustering method, which encodes concurrent signals into images, and, for the first time, tackles clustering with image segmentation.  ...  Outperforming a variety of baselines, the proposed approach is capable of clustering inputs directly with a Neural Network, in an end-to-end fashion.  ...  This way we also achieve class-independence.  ... 
<span class="external-identifiers"> <a target="_blank" rel="external noopener" href="https://arxiv.org/abs/1911.07590v1">arXiv:1911.07590v1</a> <a target="_blank" rel="external noopener" href="https://fatcat.wiki/release/s6gzvgucpfgfjblb7hgdlelaqy">fatcat:s6gzvgucpfgfjblb7hgdlelaqy</a> </span>
<a target="_blank" rel="noopener" href="https://web.archive.org/web/20200911144717/https://arxiv.org/pdf/1911.07590v1.pdf" title="fulltext PDF download" data-goatcounter-click="serp-fulltext" data-goatcounter-title="serp-fulltext"> <button class="ui simple right pointing dropdown compact black labeled icon button serp-button"> <i class="icon ia-icon"></i> Web Archive [PDF] <div class="menu fulltext-thumbnail"> <img src="https://blobs.fatcat.wiki/thumbnail/pdf/4a/7d/4a7d790d10314348b4aea972e08cfadacbec85d4.180px.jpg" alt="fulltext thumbnail" loading="lazy"> </div> </button> </a> <a target="_blank" rel="external noopener" href="https://arxiv.org/abs/1911.07590v1" title="arxiv.org access"> <button class="ui compact blue labeled icon button serp-button"> <i class="file alternate outline icon"></i> arxiv.org </button> </a>

Medical Image Segmentation Using Independent Component Analysis-Based Kernelized Fuzzy c-Means Clustering

Yao-Tien Chen
<span title="">2017</span> <i title="Hindawi Limited"> <a target="_blank" rel="noopener" href="https://fatcat.wiki/container/wpareqynwbgqdfodcyhh36aqaq" style="color: black;">Mathematical Problems in Engineering</a> </i> &nbsp;
Relying on the decomposition of a multivariate signal into independent non-Gaussian components and using a more appropriate kernel-induced distance for fuzzy clustering, the proposed method is capable  ...  The paper accordingly develops an ICKFCM method based on kernelized fuzzy c-means clustering with ICA analysis for extracting regions of interest in MRI brain images.  ...  Clustering algorithms attempt to classify a pixel to a tissue class by applying the notion of similarity to the class; they can thus be adopted for image segmentation.  ... 
<span class="external-identifiers"> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.1155/2017/5892039">doi:10.1155/2017/5892039</a> <a target="_blank" rel="external noopener" href="https://fatcat.wiki/release/7zzq53iqajamdg6habflmmkflq">fatcat:7zzq53iqajamdg6habflmmkflq</a> </span>
<a target="_blank" rel="noopener" href="https://web.archive.org/web/20180723064842/http://downloads.hindawi.com/journals/mpe/2017/5892039.pdf" title="fulltext PDF download" data-goatcounter-click="serp-fulltext" data-goatcounter-title="serp-fulltext"> <button class="ui simple right pointing dropdown compact black labeled icon button serp-button"> <i class="icon ia-icon"></i> Web Archive [PDF] <div class="menu fulltext-thumbnail"> <img src="https://blobs.fatcat.wiki/thumbnail/pdf/0e/5f/0e5f20b09125462e2f4468e81680bc7a3851b2f0.180px.jpg" alt="fulltext thumbnail" loading="lazy"> </div> </button> </a> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.1155/2017/5892039"> <button class="ui left aligned compact blue labeled icon button serp-button"> <i class="unlock alternate icon" style="background-color: #fb971f;"></i> hindawi.com </button> </a>

Deep clustering: Discriminative embeddings for segmentation and separation

John R. Hershey, Zhuo Chen, Jonathan Le Roux, Shinji Watanabe
<span title="">2016</span> <i title="IEEE"> <a target="_blank" rel="noopener" href="https://fatcat.wiki/container/rc5jnc4ldvhs3dswicq5wk3vsq" style="color: black;">2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)</a> </i> &nbsp;
At test time, the clustering step "decodes" the segmentation implicit in the embeddings by optimizing K-means with respect to the unknown assignments.  ...  Previous deep network approaches to separation have shown promising performance in scenarios with a fixed number of sources, each belonging to a distinct signal class, such as speech and noise.  ...  Although results are preliminary, this suggests that we may hope to achieve class-independent segmentation of arbitrary sounds, with additional application to image segmentation and other domains.  ... 
<span class="external-identifiers"> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.1109/icassp.2016.7471631">doi:10.1109/icassp.2016.7471631</a> <a target="_blank" rel="external noopener" href="https://dblp.org/rec/conf/icassp/HersheyCRW16.html">dblp:conf/icassp/HersheyCRW16</a> <a target="_blank" rel="external noopener" href="https://fatcat.wiki/release/wv3n4ydlovdyxkqcrpct6m7luq">fatcat:wv3n4ydlovdyxkqcrpct6m7luq</a> </span>
<a target="_blank" rel="noopener" href="https://web.archive.org/web/20181222234637/http://www.jonathanleroux.org:80/pdf/Hershey2016ICASSP03.pdf" title="fulltext PDF download" data-goatcounter-click="serp-fulltext" data-goatcounter-title="serp-fulltext"> <button class="ui simple right pointing dropdown compact black labeled icon button serp-button"> <i class="icon ia-icon"></i> Web Archive [PDF] <div class="menu fulltext-thumbnail"> <img src="https://blobs.fatcat.wiki/thumbnail/pdf/63/97/6397d7cae574e69ab7ed58605c329eb437ff2149.180px.jpg" alt="fulltext thumbnail" loading="lazy"> </div> </button> </a> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.1109/icassp.2016.7471631"> <button class="ui left aligned compact blue labeled icon button serp-button"> <i class="external alternate icon"></i> ieee.com </button> </a>

Computer-aided diagnosis and visualization based on clustering and independent component analysis for breast MRI

A. Meyer-Baese, O. Lange, T. Schlossbauer, A. Wismuller
<span title="">2008</span> <i title="IEEE"> <a target="_blank" rel="noopener" href="https://fatcat.wiki/container/anlh4tvwprcrtoxv5d4h6a7rye" style="color: black;">2008 15th IEEE International Conference on Image Processing</a> </i> &nbsp;
set of cluster assignment maps which further provide a segmentation with regard to identification and regional subclassification of pathological breast tissue lesions.  ...  Computer-aided diagnosis and simultaneous visualization based on independent component analysis and clustering are integrated in an intelligent system for the evaluation of small mammographic lesions in  ...  data analysis-based) and the obtained time-signal intensity curves are compared to the four Kuhl classes and automatically assigned to a class by a clustering or ICA.  ... 
<span class="external-identifiers"> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.1109/icip.2008.4712426">doi:10.1109/icip.2008.4712426</a> <a target="_blank" rel="external noopener" href="https://www.ncbi.nlm.nih.gov/pubmed/19915691">pmid:19915691</a> <a target="_blank" rel="external noopener" href="https://pubmed.ncbi.nlm.nih.gov/PMC2776755/">pmcid:PMC2776755</a> <a target="_blank" rel="external noopener" href="https://dblp.org/rec/conf/icip/Meyer-BaseLSW08.html">dblp:conf/icip/Meyer-BaseLSW08</a> <a target="_blank" rel="external noopener" href="https://fatcat.wiki/release/doezuogtorgh5jpcltb35s36fe">fatcat:doezuogtorgh5jpcltb35s36fe</a> </span>
<a target="_blank" rel="noopener" href="https://web.archive.org/web/20200206083724/http://europepmc.org/backend/ptpmcrender.fcgi?accid=PMC2776755&amp;blobtype=pdf" title="fulltext PDF download" data-goatcounter-click="serp-fulltext" data-goatcounter-title="serp-fulltext"> <button class="ui simple right pointing dropdown compact black labeled icon button serp-button"> <i class="icon ia-icon"></i> Web Archive [PDF] <div class="menu fulltext-thumbnail"> <img src="https://blobs.fatcat.wiki/thumbnail/pdf/8b/7a/8b7ae4cd1d7a26be9303dcf4a0300f182f4505a2.180px.jpg" alt="fulltext thumbnail" loading="lazy"> </div> </button> </a> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.1109/icip.2008.4712426"> <button class="ui left aligned compact blue labeled icon button serp-button"> <i class="external alternate icon"></i> ieee.com </button> </a> <a target="_blank" rel="external noopener" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2776755" title="pubmed link"> <button class="ui compact blue labeled icon button serp-button"> <i class="file alternate outline icon"></i> pubmed.gov </button> </a>

Deep clustering: Discriminative embeddings for segmentation and separation [article]

John R. Hershey, Zhuo Chen, Jonathan Le Roux, Shinji Watanabe
<span title="2015-08-18">2015</span> <i > arXiv </i> &nbsp; <span class="release-stage" >pre-print</span>
In contrast, spectral clustering approaches are flexible with respect to the classes and number of items to be segmented, but it has been unclear how to leverage the learning power and speed of deep networks  ...  Previous deep network approaches provide great advantages in terms of learning power and speed, but previously it has been unclear how to use them to separate signals in a class-independent way.  ...  Although results are preliminary, the hope is that this work leads to methods that can achieve class-independent segmentation of arbitrary sounds, with additional application to image segmentation and  ... 
<span class="external-identifiers"> <a target="_blank" rel="external noopener" href="https://arxiv.org/abs/1508.04306v1">arXiv:1508.04306v1</a> <a target="_blank" rel="external noopener" href="https://fatcat.wiki/release/5w2vrwggyffbtgdl2byh4zc2c4">fatcat:5w2vrwggyffbtgdl2byh4zc2c4</a> </span>
<a target="_blank" rel="noopener" href="https://web.archive.org/web/20191025220441/https://arxiv.org/pdf/1508.04306v1.pdf" title="fulltext PDF download" data-goatcounter-click="serp-fulltext" data-goatcounter-title="serp-fulltext"> <button class="ui simple right pointing dropdown compact black labeled icon button serp-button"> <i class="icon ia-icon"></i> Web Archive [PDF] <div class="menu fulltext-thumbnail"> <img src="https://blobs.fatcat.wiki/thumbnail/pdf/83/e9/83e9dc89b867b24ae64f7d3883489a9fa67eca7a.180px.jpg" alt="fulltext thumbnail" loading="lazy"> </div> </button> </a> <a target="_blank" rel="external noopener" href="https://arxiv.org/abs/1508.04306v1" title="arxiv.org access"> <button class="ui compact blue labeled icon button serp-button"> <i class="file alternate outline icon"></i> arxiv.org </button> </a>

Partial Discharge Pulse Segmentation Approach of Converter Transformers Based on Higher Order Cumulant

Dingqian Yang, Weining Zhang, Guanghu Xu, Tiangeng Li, Jiexin Shen, Yunkai Yue, Shuaibing Li
<span title="2022-01-06">2022</span> <i title="MDPI AG"> <a target="_blank" rel="noopener" href="https://fatcat.wiki/container/a2yvk5xhdnhpxjnk6yd33uudqq" style="color: black;">Energies</a> </i> &nbsp;
The field test shows that the extraction rate of the PD analog signal can reach 79% after applying the segmentation method, which has a great improvement compared with a very low location accuracy rate  ...  Therefore, this paper focuses on the study of a new pulse segmentation technology, which can separate the partial discharge pulse from the sampling signal containing impulse noise so as to suppress the  ...  After truncation, the clustering object becomes an independent pulse signal, and good separation can be achieved between independent pulses.  ... 
<span class="external-identifiers"> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.3390/en15020415">doi:10.3390/en15020415</a> <a target="_blank" rel="external noopener" href="https://fatcat.wiki/release/dofuhmagqzah7lvkk7ekbrqg4m">fatcat:dofuhmagqzah7lvkk7ekbrqg4m</a> </span>
<a target="_blank" rel="noopener" href="https://web.archive.org/web/20220428092622/https://mdpi-res.com/d_attachment/energies/energies-15-00415/article_deploy/energies-15-00415-v2.pdf?version=1641724892" title="fulltext PDF download" data-goatcounter-click="serp-fulltext" data-goatcounter-title="serp-fulltext"> <button class="ui simple right pointing dropdown compact black labeled icon button serp-button"> <i class="icon ia-icon"></i> Web Archive [PDF] <div class="menu fulltext-thumbnail"> <img src="https://blobs.fatcat.wiki/thumbnail/pdf/8f/13/8f137460e8446ce4da120e827786bd30686f0e1b.180px.jpg" alt="fulltext thumbnail" loading="lazy"> </div> </button> </a> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.3390/en15020415"> <button class="ui left aligned compact blue labeled icon button serp-button"> <i class="unlock alternate icon" style="background-color: #fb971f;"></i> mdpi.com </button> </a>

Automatic Creation of Hypnogram

Michal Gala, Branko Babusiak, Vilem Novak
<span title="2011-03-31">2011</span> <i title="University of Zilina"> <a target="_blank" rel="noopener" href="https://fatcat.wiki/container/bh3na34refdujpi3gcoqoz74b4" style="color: black;">Communications - Scientific Letters of the University of Zilina</a> </i> &nbsp;
Cluster analysis is used to divide individual segments and the class with biggest quantity of segments is called "priority class". Definition of sleep states is then based on priority class.  ...  Sleep state definition and hypnogram Segments are divided into classes for each of six channels independently.  ... 
<span class="external-identifiers"> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.26552/com.c.2011.1.47-50">doi:10.26552/com.c.2011.1.47-50</a> <a target="_blank" rel="external noopener" href="https://fatcat.wiki/release/5rdt5w2rx5cn5neugljkzx2c4u">fatcat:5rdt5w2rx5cn5neugljkzx2c4u</a> </span>
<a target="_blank" rel="noopener" href="https://web.archive.org/web/20220507201824/http://komunikacie.uniza.sk/pdfs/csl/2011/01/09.pdf" title="fulltext PDF download" data-goatcounter-click="serp-fulltext" data-goatcounter-title="serp-fulltext"> <button class="ui simple right pointing dropdown compact black labeled icon button serp-button"> <i class="icon ia-icon"></i> Web Archive [PDF] <div class="menu fulltext-thumbnail"> <img src="https://blobs.fatcat.wiki/thumbnail/pdf/9e/07/9e07f9f48eb31010194ab15f797e2636d5cbd210.180px.jpg" alt="fulltext thumbnail" loading="lazy"> </div> </button> </a> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.26552/com.c.2011.1.47-50"> <button class="ui left aligned compact blue labeled icon button serp-button"> <i class="unlock alternate icon" style="background-color: #fb971f;"></i> Publisher / doi.org </button> </a>

Audio Spectrum Projection Based On Several Basis Decomposition Algorithms Applied To General Sound Recognition And Audio Segmentation

Hyoung-Gook Kim, Thomas Sikora
<span title="2004-09-06">2004</span> <i title="Zenodo"> Zenodo </i> &nbsp;
The initial clusters are used to train an initial set of speaker models from all segments of each respective cluster.  ...  In order to train a statistical model on the basis projection features and RMSnorm gain value of each cluster an ergodic HMM with 7 states is trained for each cluster.  ... 
<span class="external-identifiers"> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.5281/zenodo.38263">doi:10.5281/zenodo.38263</a> <a target="_blank" rel="external noopener" href="https://fatcat.wiki/release/rjbbntzyavbphixujcthwdieue">fatcat:rjbbntzyavbphixujcthwdieue</a> </span>
<a target="_blank" rel="noopener" href="https://web.archive.org/web/20181103034911/https://zenodo.org/record/38263/files/cr1215.pdf" title="fulltext PDF download" data-goatcounter-click="serp-fulltext" data-goatcounter-title="serp-fulltext"> <button class="ui simple right pointing dropdown compact black labeled icon button serp-button"> <i class="icon ia-icon"></i> Web Archive [PDF] <div class="menu fulltext-thumbnail"> <img src="https://blobs.fatcat.wiki/thumbnail/pdf/9e/5b/9e5b581b67e3f8614b5c348393a4932550c889a3.180px.jpg" alt="fulltext thumbnail" loading="lazy"> </div> </button> </a> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.5281/zenodo.38263"> <button class="ui left aligned compact blue labeled icon button serp-button"> <i class="unlock alternate icon" style="background-color: #fb971f;"></i> zenodo.org </button> </a>

MiTfAT: A Python-based Analysis Tool for Molecular fMRI Experiments

Vahid Bokharaie
<span title="2021-02-21">2021</span> <i title="The Open Journal"> <a target="_blank" rel="noopener" href="https://fatcat.wiki/container/3gk7mr6lhvdwnkgcicv7r2lrry" style="color: black;">Journal of Open Source Software</a> </i> &nbsp;
the unit of volume in which each fMRI signal is measured).  ...  Normally, fMRI is used to detect changes associated with blood flow, but it can also be used to detect changes in concentrations of molecules with different magnetic properties that might be directly injected  ...  Hence, K-means can be easily replaced with any other clustering algorithm implemented in scikit-learn. • Removing voxels with a low signal to noise ratio.  ... 
<span class="external-identifiers"> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.21105/joss.02827">doi:10.21105/joss.02827</a> <a target="_blank" rel="external noopener" href="https://fatcat.wiki/release/ny2fjzvbxzd7tgirdyjvnsrqoe">fatcat:ny2fjzvbxzd7tgirdyjvnsrqoe</a> </span>
<a target="_blank" rel="noopener" href="https://web.archive.org/web/20210228043912/https://joss.theoj.org/papers/10.21105/joss.02827.pdf" title="fulltext PDF download" data-goatcounter-click="serp-fulltext" data-goatcounter-title="serp-fulltext"> <button class="ui simple right pointing dropdown compact black labeled icon button serp-button"> <i class="icon ia-icon"></i> Web Archive [PDF] <div class="menu fulltext-thumbnail"> <img src="https://blobs.fatcat.wiki/thumbnail/pdf/13/32/133225a7daef22791ba54b15bab82fbb94e2578f.180px.jpg" alt="fulltext thumbnail" loading="lazy"> </div> </button> </a> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.21105/joss.02827"> <button class="ui left aligned compact blue labeled icon button serp-button"> <i class="unlock alternate icon" style="background-color: #fb971f;"></i> Publisher / doi.org </button> </a>

Clustering Based Speech Emotion Recognition by Incorporating Learned Features and Deep BiLSTM

Mr. Mustaqeem, Muhammad Sajjad, Soonil Kwon
<span title="">2020</span> <i title="Institute of Electrical and Electronics Engineers (IEEE)"> <a target="_blank" rel="noopener" href="https://fatcat.wiki/container/q7qi7j4ckfac7ehf3mjbso4hne" style="color: black;">IEEE Access</a> </i> &nbsp;
In contrast, we introduce a novel framework for SER using a key sequence segment selection based on redial based function network (RBFN) similarity measurement in clusters.  ...  The robustness and effectiveness of the suggested SER model is proved from the experimentations when compared to state-of-the-art SER methods with an achieve up to 72.25%, 85.57%, and 77.02% accuracy over  ...  Single label is assigned to all segment of one utterance and give to K-mean clustering [35] algorithm to group the similar segment with each other.  ... 
<span class="external-identifiers"> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.1109/access.2020.2990405">doi:10.1109/access.2020.2990405</a> <a target="_blank" rel="external noopener" href="https://fatcat.wiki/release/imc3sqbzyzb3zkrpfn2mdpejb4">fatcat:imc3sqbzyzb3zkrpfn2mdpejb4</a> </span>
<a target="_blank" rel="noopener" href="https://web.archive.org/web/20200603074928/https://ieeexplore.ieee.org/ielx7/6287639/8948470/09078789.pdf?tp=&amp;arnumber=9078789&amp;isnumber=8948470&amp;ref=" title="fulltext PDF download" data-goatcounter-click="serp-fulltext" data-goatcounter-title="serp-fulltext"> <button class="ui simple right pointing dropdown compact black labeled icon button serp-button"> <i class="icon ia-icon"></i> Web Archive [PDF] <div class="menu fulltext-thumbnail"> <img src="https://blobs.fatcat.wiki/thumbnail/pdf/da/6f/da6f136aa6121ce4e4fd26c1ce39024f746664d3.180px.jpg" alt="fulltext thumbnail" loading="lazy"> </div> </button> </a> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.1109/access.2020.2990405"> <button class="ui left aligned compact blue labeled icon button serp-button"> <i class="unlock alternate icon" style="background-color: #fb971f;"></i> ieee.com </button> </a>

Automatic EOG Artifact Removal in Brain-computer Interface Systems

Wei-Yen Hsu, Cheng-Xuan Li, Meng-Chen Li, Hui-Yu Tien
<span title="2018-12-01">2018</span> <i title="Digital Information Research Foundation"> <a target="_blank" rel="noopener" href="https://fatcat.wiki/container/fdrechabivf5be42dv7atlanwa" style="color: black;">Journal of Multimedia Processing and Technologies</a> </i> &nbsp;
Combined with independent component analysis (ICA) and feature extraction, fuzzy c-means (FCM) clustering is used to discriminate between left and right finger movement without supervision.  ...  FCM clustering is used for feature discrimination. It is an unsupervised approach suitable for the applications of biomedical signals.  ...  (a) Acquired EEG signals. (b) Independent components. Table showsthe comparisons of classification accuracy without and with EOG artifact removal.  ... 
<span class="external-identifiers"> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.6025/jmpt/2018/9/4/117-123">doi:10.6025/jmpt/2018/9/4/117-123</a> <a target="_blank" rel="external noopener" href="https://fatcat.wiki/release/x6ltyruicrcf3ddi6cbcgwftcy">fatcat:x6ltyruicrcf3ddi6cbcgwftcy</a> </span>
<a target="_blank" rel="noopener" href="https://web.archive.org/web/20200320153216/http://dline.info/jmpt/fulltext/v9n4/jmptv9n4_1.pdf" title="fulltext PDF download" data-goatcounter-click="serp-fulltext" data-goatcounter-title="serp-fulltext"> <button class="ui simple right pointing dropdown compact black labeled icon button serp-button"> <i class="icon ia-icon"></i> Web Archive [PDF] <div class="menu fulltext-thumbnail"> <img src="https://blobs.fatcat.wiki/thumbnail/pdf/38/4e/384e065f4e1b805723e34e6cf5068b3081580883.180px.jpg" alt="fulltext thumbnail" loading="lazy"> </div> </button> </a> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.6025/jmpt/2018/9/4/117-123"> <button class="ui left aligned compact blue labeled icon button serp-button"> <i class="external alternate icon"></i> Publisher / doi.org </button> </a>

Segmentation and Classification of Dot and Non-Dot-Like Fluorescence in situ Hybridization Signals for Automated Detection of Cytogenetic Abnormalities

Boaz Lerner, Lev Koushnir, Josepha Yeshaya
<span title="">2007</span> <i title="Institute of Electrical and Electronics Engineers (IEEE)"> <a target="_blank" rel="noopener" href="https://fatcat.wiki/container/opxxmwcvy5fnnhqoc4wtvb4etm" style="color: black;">IEEE Transactions on Information Technology in Biomedicine</a> </i> &nbsp;
Second, subsignals composing non-dot-like signals are detected and clustered to signals.  ...  First, nuclei are segmented from their background and from each other in order to associate signals with specific isolated nuclei.  ...  We first segmented nuclei from their background and from each other and then segmented signals and subsignals on a nucleus and clustered the subsignals into signals.  ... 
<span class="external-identifiers"> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.1109/titb.2007.894335">doi:10.1109/titb.2007.894335</a> <a target="_blank" rel="external noopener" href="https://www.ncbi.nlm.nih.gov/pubmed/17674627">pmid:17674627</a> <a target="_blank" rel="external noopener" href="https://fatcat.wiki/release/xfsa5jchdjcotiuczx2f72diom">fatcat:xfsa5jchdjcotiuczx2f72diom</a> </span>
<a target="_blank" rel="noopener" href="https://web.archive.org/web/20180729053427/http://www.ee.bgu.ac.il:80/~boaz/LernerKoushnirYeshayaTITB2007.pdf" title="fulltext PDF download" data-goatcounter-click="serp-fulltext" data-goatcounter-title="serp-fulltext"> <button class="ui simple right pointing dropdown compact black labeled icon button serp-button"> <i class="icon ia-icon"></i> Web Archive [PDF] <div class="menu fulltext-thumbnail"> <img src="https://blobs.fatcat.wiki/thumbnail/pdf/e7/ef/e7ef93102f003e12caf04f2916f28a467d4dccba.180px.jpg" alt="fulltext thumbnail" loading="lazy"> </div> </button> </a> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.1109/titb.2007.894335"> <button class="ui left aligned compact blue labeled icon button serp-button"> <i class="external alternate icon"></i> ieee.com </button> </a>

A New Method For Colourizing Of Multichannel Mr Images Based On Real Colour Of Human Brain

Mohammad Hossein Kadbi, Emadoddin Fatemizaheh, Abouzar Eslami, Maryam Khosroshahi
<span title="2007-09-03">2007</span> <i title="Zenodo"> Zenodo </i> &nbsp;
Initially, the input image is segmented into three major classes. Selecting of these major classes is performed by clustering on spatial and statistical features of independent image.  ...  UNSUPERVISED SEGMENTATION Unsupervised techniques, which are usually called clustering, automatically find the structure in the images. A cluster is an area in feature space with a high density.  ... 
<span class="external-identifiers"> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.5281/zenodo.40296">doi:10.5281/zenodo.40296</a> <a target="_blank" rel="external noopener" href="https://fatcat.wiki/release/znvtloki3nfe3dyi6fhpwbwxsu">fatcat:znvtloki3nfe3dyi6fhpwbwxsu</a> </span>
<a target="_blank" rel="noopener" href="https://web.archive.org/web/20181101153713/https://zenodo.org/record/40296/files/a3l-f05.pdf" title="fulltext PDF download" data-goatcounter-click="serp-fulltext" data-goatcounter-title="serp-fulltext"> <button class="ui simple right pointing dropdown compact black labeled icon button serp-button"> <i class="icon ia-icon"></i> Web Archive [PDF] <div class="menu fulltext-thumbnail"> <img src="https://blobs.fatcat.wiki/thumbnail/pdf/c0/d7/c0d774eb8d94476a50565fb02d5e720297fa1b48.180px.jpg" alt="fulltext thumbnail" loading="lazy"> </div> </button> </a> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.5281/zenodo.40296"> <button class="ui left aligned compact blue labeled icon button serp-button"> <i class="unlock alternate icon" style="background-color: #fb971f;"></i> zenodo.org </button> </a>

Advances in Very Low Bit Rate Speech Coding Using Recognition and Synthesis Techniques [chapter]

Geneviève Baudoin, François Capman, Jan Černocký, Fadi El Chami, Maurice Charbit, Gérard Chollet, Dijana Petrovska-Delacrétaz
<span title="">2002</span> <i title="Springer Berlin Heidelberg"> <a target="_blank" rel="noopener" href="https://fatcat.wiki/container/2w3awgokqne6te4nvlofavy5a4" style="color: black;">Lecture Notes in Computer Science</a> </i> &nbsp;
Results of speakerindependent experiments are reported and speaker clustering using vector quantization is proposed.  ...  ALISP (Automatic Language Independent Speech Processing) units are an alternative concept to using phoneme-derived units in speech processing.  ...  With the speech segments clustered in each class, we trained a corresponding HMM model with three states through 5 successive re-estimation steps.  ... 
<span class="external-identifiers"> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.1007/3-540-46154-x_37">doi:10.1007/3-540-46154-x_37</a> <a target="_blank" rel="external noopener" href="https://fatcat.wiki/release/ecjonfuoavd7nfznbdtp6y47me">fatcat:ecjonfuoavd7nfznbdtp6y47me</a> </span>
<a target="_blank" rel="noopener" href="https://web.archive.org/web/20170809034848/http://perso.telecom-paristech.fr/~chollet/Projets/SYMPATEX/CR/TSD022hwbbb2fnm13pen9.pdf" title="fulltext PDF download" data-goatcounter-click="serp-fulltext" data-goatcounter-title="serp-fulltext"> <button class="ui simple right pointing dropdown compact black labeled icon button serp-button"> <i class="icon ia-icon"></i> Web Archive [PDF] <div class="menu fulltext-thumbnail"> <img src="https://blobs.fatcat.wiki/thumbnail/pdf/c5/a2/c5a24a189bd1f60c5a59bc8e2100b1025845feed.180px.jpg" alt="fulltext thumbnail" loading="lazy"> </div> </button> </a> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.1007/3-540-46154-x_37"> <button class="ui left aligned compact blue labeled icon button serp-button"> <i class="external alternate icon"></i> springer.com </button> </a>

Time-Domain Blind Audio Source Separation Using Advanced Component Clustering and Reconstruction

Zbynek Koldovsky, Petr Tichavsky
<span title="">2008</span> <i title="IEEE"> 2008 Hands-Free Speech Communication and Microphone Arrays </i> &nbsp;
The method allows efficient separation with good signal-to-interference ratio (SIR) and signal-to-distortion ratio (SDR) using short data segments only.  ...  A reconstruction procedure is applied to clusters of components to get the individual responses (2).  ...  The BGL consists in dividing the received signals in certain number of non-overlapping segments, computing signal covariance matrices on each segment, and an approximate joint diagonalization (AJD) of  ... 
<span class="external-identifiers"> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.1109/hscma.2008.4538725">doi:10.1109/hscma.2008.4538725</a> <a target="_blank" rel="external noopener" href="https://fatcat.wiki/release/fc5vgrjkfrdfvil4jsgkat7jfq">fatcat:fc5vgrjkfrdfvil4jsgkat7jfq</a> </span>
<a target="_blank" rel="noopener" href="https://web.archive.org/web/20170809133136/http://itakura.ite.tul.cz/zbynek/pubs/hcsma2008paperv5.pdf" title="fulltext PDF download" data-goatcounter-click="serp-fulltext" data-goatcounter-title="serp-fulltext"> <button class="ui simple right pointing dropdown compact black labeled icon button serp-button"> <i class="icon ia-icon"></i> Web Archive [PDF] <div class="menu fulltext-thumbnail"> <img src="https://blobs.fatcat.wiki/thumbnail/pdf/0f/b9/0fb928725b661c44f36933d497d2640f36888066.180px.jpg" alt="fulltext thumbnail" loading="lazy"> </div> </button> </a> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.1109/hscma.2008.4538725"> <button class="ui left aligned compact blue labeled icon button serp-button"> <i class="external alternate icon"></i> ieee.com </button> </a>
&laquo; Previous Showing results 1 &mdash; 15 out of 143,886 results