Patterns of Scalable Bayesian Inference
[article]
Elaine Angelino, Matthew James Johnson, Ryan P. Adams
<span title="2016-03-22">2016</span>
<i >
arXiv
</i>
<span class="release-stage" >pre-print</span>
Bayesian methods are an excellent fit for this demand, but scaling Bayesian inference is a challenge. ...
As a result, there is a zoo of ideas with few clear overarching principles. In this paper, we seek to identify unifying principles, patterns, and intuitions for scaling Bayesian inference. ...
E.A. is supported by the Miller Institute for Basic Research in Science, University of California, Berkeley. M.J. is supported by a fellowship from the Harvard/MIT Joint Grants program. ...
<span class="external-identifiers">
<a target="_blank" rel="external noopener" href="https://arxiv.org/abs/1602.05221v2">arXiv:1602.05221v2</a>
<a target="_blank" rel="external noopener" href="https://fatcat.wiki/release/ksgpb3vhgbdszbzna5fgyelske">fatcat:ksgpb3vhgbdszbzna5fgyelske</a>
</span>
<a target="_blank" rel="noopener" href="https://web.archive.org/web/20200823114007/https://arxiv.org/pdf/1602.05221v2.pdf" title="fulltext PDF download" data-goatcounter-click="serp-fulltext" data-goatcounter-title="serp-fulltext">
<button class="ui simple right pointing dropdown compact black labeled icon button serp-button">
<i class="icon ia-icon"></i>
Web Archive
[PDF]
<div class="menu fulltext-thumbnail">
<img src="https://blobs.fatcat.wiki/thumbnail/pdf/4a/95/4a95934f4566ea0313891d35c6f992925bd5024d.180px.jpg" alt="fulltext thumbnail" loading="lazy">
</div>
</button>
</a>
<a target="_blank" rel="external noopener" href="https://arxiv.org/abs/1602.05221v2" title="arxiv.org access">
<button class="ui compact blue labeled icon button serp-button">
<i class="file alternate outline icon"></i>
arxiv.org
</button>
</a>