Filters








212 Hits in 5.9 sec

Salient object detection on hyperspectral images using features learned from unsupervised segmentation task [article]

Nevrez Imamoglu, Guanqun Ding, Yuming Fang, Asako Kanezaki, Toru Kouyama, Ryosuke Nakamura
<span title="2019-02-28">2019</span> <i > arXiv </i> &nbsp; <span class="release-stage" >pre-print</span>
from unsupervised image segmentation task.  ...  A few studies using low-level features on hyperspectral images demonstrated that salient object detection can be achieved.  ...  SELF-SUPERVISED SALIENT OBJECT DETECTION ON HYPERSPECTRAL IMAGES To achieve salient object detection goal in Fig. 1 , we propose to use an unsupervised backpropagation semantic segmentation method [20  ... 
<span class="external-identifiers"> <a target="_blank" rel="external noopener" href="https://arxiv.org/abs/1902.10993v1">arXiv:1902.10993v1</a> <a target="_blank" rel="external noopener" href="https://fatcat.wiki/release/xhympm5ifncrdg2f7i2ocdkmji">fatcat:xhympm5ifncrdg2f7i2ocdkmji</a> </span>
<a target="_blank" rel="noopener" href="https://web.archive.org/web/20200905190845/https://arxiv.org/pdf/1902.10993v1.pdf" title="fulltext PDF download" data-goatcounter-click="serp-fulltext" data-goatcounter-title="serp-fulltext"> <button class="ui simple right pointing dropdown compact black labeled icon button serp-button"> <i class="icon ia-icon"></i> Web Archive [PDF] <div class="menu fulltext-thumbnail"> <img src="https://blobs.fatcat.wiki/thumbnail/pdf/63/f3/63f319f1465240718cacfd19a76ab397d4954731.180px.jpg" alt="fulltext thumbnail" loading="lazy"> </div> </button> </a> <a target="_blank" rel="external noopener" href="https://arxiv.org/abs/1902.10993v1" title="arxiv.org access"> <button class="ui compact blue labeled icon button serp-button"> <i class="file alternate outline icon"></i> arxiv.org </button> </a>

2020 Index IEEE Transactions on Image Processing Vol. 29

<span title="">2020</span> <i title="Institute of Electrical and Electronics Engineers (IEEE)"> <a target="_blank" rel="noopener" href="https://fatcat.wiki/container/dhlhr4jqkbcmdbua2ca45o7kru" style="color: black;">IEEE Transactions on Image Processing</a> </i> &nbsp;
., +, TIP 2020 2834-2844 Unsupervised Learning of Image Segmentation Based on Differentiable Feature Clustering.  ...  ., +, TIP 2020 3763-3776 RGB-T Salient Object Detection via Fusing Multi-Level CNN Features.  ... 
<span class="external-identifiers"> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.1109/tip.2020.3046056">doi:10.1109/tip.2020.3046056</a> <a target="_blank" rel="external noopener" href="https://fatcat.wiki/release/24m6k2elprf2nfmucbjzhvzk3m">fatcat:24m6k2elprf2nfmucbjzhvzk3m</a> </span>
<a target="_blank" rel="noopener" href="https://web.archive.org/web/20201224144031/https://ieeexplore.ieee.org/ielx7/83/8835130/09301460.pdf?tp=&amp;arnumber=9301460&amp;isnumber=8835130&amp;ref=" title="fulltext PDF download" data-goatcounter-click="serp-fulltext" data-goatcounter-title="serp-fulltext"> <button class="ui simple right pointing dropdown compact black labeled icon button serp-button"> <i class="icon ia-icon"></i> Web Archive [PDF] <div class="menu fulltext-thumbnail"> <img src="https://blobs.fatcat.wiki/thumbnail/pdf/56/93/5693eebc307c33915511489f6dcddcb127981534.180px.jpg" alt="fulltext thumbnail" loading="lazy"> </div> </button> </a> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.1109/tip.2020.3046056"> <button class="ui left aligned compact blue labeled icon button serp-button"> <i class="external alternate icon"></i> ieee.com </button> </a>

2021 Index IEEE Transactions on Image Processing Vol. 30

<span title="">2021</span> <i title="Institute of Electrical and Electronics Engineers (IEEE)"> <a target="_blank" rel="noopener" href="https://fatcat.wiki/container/dhlhr4jqkbcmdbua2ca45o7kru" style="color: black;">IEEE Transactions on Image Processing</a> </i> &nbsp;
-that appeared in this periodical during 2021, and items from previous years that were commented upon or corrected in 2021.  ...  ., +, TIP 2021 5327-5338 Multi-Task Deep Learning for Image Segmentation Using Recursive Approximation Tasks.  ...  ., +, TIP 2021 7364-7377 Cross-Layer Feature Pyramid Network for Salient Object Detection.  ... 
<span class="external-identifiers"> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.1109/tip.2022.3142569">doi:10.1109/tip.2022.3142569</a> <a target="_blank" rel="external noopener" href="https://fatcat.wiki/release/z26yhwuecbgrnb2czhwjlf73qu">fatcat:z26yhwuecbgrnb2czhwjlf73qu</a> </span>
<a target="_blank" rel="noopener" href="https://web.archive.org/web/20220114082313/https://ieeexplore.ieee.org/ielx7/83/9263394/09679464.pdf?tp=&amp;arnumber=9679464&amp;isnumber=9263394&amp;ref=" title="fulltext PDF download" data-goatcounter-click="serp-fulltext" data-goatcounter-title="serp-fulltext"> <button class="ui simple right pointing dropdown compact black labeled icon button serp-button"> <i class="icon ia-icon"></i> Web Archive [PDF] <div class="menu fulltext-thumbnail"> <img src="https://blobs.fatcat.wiki/thumbnail/pdf/88/c2/88c257e9b04f04be0d262c7cb19aa9d2a764c5f3.180px.jpg" alt="fulltext thumbnail" loading="lazy"> </div> </button> </a> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.1109/tip.2022.3142569"> <button class="ui left aligned compact blue labeled icon button serp-button"> <i class="external alternate icon"></i> ieee.com </button> </a>

Optical Filter Net: A Spectral-Aware RGB Camera Framework for Effective Green Pepper Segmentation

Jun Yu, Toru Kurihara, Shu Zhan
<span title="">2021</span> <i title="Institute of Electrical and Electronics Engineers (IEEE)"> <a target="_blank" rel="noopener" href="https://fatcat.wiki/container/q7qi7j4ckfac7ehf3mjbso4hne" style="color: black;">IEEE Access</a> </i> &nbsp;
[18] proposed feature learning on hyperspectral images by unsupervised segmentation tasks.  ...  Recently, salient object detection has focused on new approaches using hyperspectral images. For example, Liang et al.  ... 
<span class="external-identifiers"> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.1109/access.2021.3091305">doi:10.1109/access.2021.3091305</a> <a target="_blank" rel="external noopener" href="https://fatcat.wiki/release/cymdrklhtjaszpytllla4o3g44">fatcat:cymdrklhtjaszpytllla4o3g44</a> </span>
<a target="_blank" rel="noopener" href="https://web.archive.org/web/20210623200847/https://ieeexplore.ieee.org/ielx7/6287639/6514899/09461752.pdf?tp=&amp;arnumber=9461752&amp;isnumber=6514899&amp;ref=" title="fulltext PDF download" data-goatcounter-click="serp-fulltext" data-goatcounter-title="serp-fulltext"> <button class="ui simple right pointing dropdown compact black labeled icon button serp-button"> <i class="icon ia-icon"></i> Web Archive [PDF] <div class="menu fulltext-thumbnail"> <img src="https://blobs.fatcat.wiki/thumbnail/pdf/07/e3/07e3e110a9cb8478da7fc720da5545c7aaa17338.180px.jpg" alt="fulltext thumbnail" loading="lazy"> </div> </button> </a> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.1109/access.2021.3091305"> <button class="ui left aligned compact blue labeled icon button serp-button"> <i class="unlock alternate icon" style="background-color: #fb971f;"></i> ieee.com </button> </a>

Table of contents

<span title="">2020</span> <i title="Institute of Electrical and Electronics Engineers (IEEE)"> <a target="_blank" rel="noopener" href="https://fatcat.wiki/container/dhlhr4jqkbcmdbua2ca45o7kru" style="color: black;">IEEE Transactions on Image Processing</a> </i> &nbsp;
Song 4683 Residual Learning for Salient Object Detection ................................................. M. Feng, H. Lu, and Y.  ...  Fu 3311 RGB-T Salient Object Detection via Fusing Multi-Level CNN Features ..................................................... .............................................................. Q.  ... 
<span class="external-identifiers"> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.1109/tip.2019.2940372">doi:10.1109/tip.2019.2940372</a> <a target="_blank" rel="external noopener" href="https://fatcat.wiki/release/h23ul2rqazbstcho46uv3lunku">fatcat:h23ul2rqazbstcho46uv3lunku</a> </span>
<a target="_blank" rel="noopener" href="https://web.archive.org/web/20210429102328/https://ieeexplore.ieee.org/ielx7/83/8835130/09282254.pdf" title="fulltext PDF download" data-goatcounter-click="serp-fulltext" data-goatcounter-title="serp-fulltext"> <button class="ui simple right pointing dropdown compact black labeled icon button serp-button"> <i class="icon ia-icon"></i> Web Archive [PDF] <div class="menu fulltext-thumbnail"> <img src="https://blobs.fatcat.wiki/thumbnail/pdf/0c/ea/0cea14bc15b27f9789a2ff0ad711d506c1a77793.180px.jpg" alt="fulltext thumbnail" loading="lazy"> </div> </button> </a> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.1109/tip.2019.2940372"> <button class="ui left aligned compact blue labeled icon button serp-button"> <i class="external alternate icon"></i> ieee.com </button> </a>

VCIP 2020 Index

<span title="2020-12-01">2020</span> <i title="IEEE"> 2020 IEEE International Conference on Visual Communications and Image Processing (VCIP) </i> &nbsp;
with Semantic Segmentation and Transfer Learning T K Kadam, Pranav Unsupervised Point Cloud Registration via Salient Points Analysis (SPA) Kadam, Pranav Unsupervised Feedforward Feature (UFF  ...  Segmentation of Maxillary Sinus Membrane using Automatic Vertex Screening Hsung, Tai-Chiu On 2D-3D Image Feature Detections for Image To-Geometry Registration in Virtual Dental Mod Hu, Haoji  ... 
<span class="external-identifiers"> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.1109/vcip49819.2020.9301896">doi:10.1109/vcip49819.2020.9301896</a> <a target="_blank" rel="external noopener" href="https://fatcat.wiki/release/bdh7cuvstzgrbaztnahjdp5s5y">fatcat:bdh7cuvstzgrbaztnahjdp5s5y</a> </span>
<a target="_blank" rel="noopener" href="https://web.archive.org/web/20210105234653/https://ieeexplore.ieee.org/ielx7/9301747/9301748/09301896.pdf?tp=&amp;arnumber=9301896&amp;isnumber=9301748&amp;ref=" title="fulltext PDF download" data-goatcounter-click="serp-fulltext" data-goatcounter-title="serp-fulltext"> <button class="ui simple right pointing dropdown compact black labeled icon button serp-button"> <i class="icon ia-icon"></i> Web Archive [PDF] <div class="menu fulltext-thumbnail"> <img src="https://blobs.fatcat.wiki/thumbnail/pdf/25/ad/25ad6bc8038c7153c18c5e98fc8bf3e4c6a888fd.180px.jpg" alt="fulltext thumbnail" loading="lazy"> </div> </button> </a> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.1109/vcip49819.2020.9301896"> <button class="ui left aligned compact blue labeled icon button serp-button"> <i class="external alternate icon"></i> ieee.com </button> </a>

Deep Learning Meets Hyperspectral Image Analysis: A Multidisciplinary Review

Alberto Signoroni, Mattia Savardi, Annalisa Baronio, Sergio Benini
<span title="2019-05-08">2019</span> <i title="MDPI AG"> <a target="_blank" rel="noopener" href="https://fatcat.wiki/container/au3ye363lzbdroopx7rzfyv63m" style="color: black;">Journal of Imaging</a> </i> &nbsp;
On the other hand, we want to target the machine learning and computer vision experts by giving them a picture of how deep learning technologies are applied to hyperspectral data from a multidisciplinary  ...  The present review develops on two fronts: on the one hand, it is aimed at domain professionals who want to have an updated overview on how hyperspectral acquisition techniques can combine with deep learning  ...  HSI from RGB The possibility to use deep learning approaches to generate hyperspectral images just starting from RGB images, or other sparse spectral representations, has been investigated recently [34  ... 
<span class="external-identifiers"> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.3390/jimaging5050052">doi:10.3390/jimaging5050052</a> <a target="_blank" rel="external noopener" href="https://www.ncbi.nlm.nih.gov/pubmed/34460490">pmid:34460490</a> <a target="_blank" rel="external noopener" href="https://fatcat.wiki/release/ledlmt42bfdtdhe7tvj2dl2rwm">fatcat:ledlmt42bfdtdhe7tvj2dl2rwm</a> </span>
<a target="_blank" rel="noopener" href="https://web.archive.org/web/20200211164555/https://res.mdpi.com/d_attachment/jimaging/jimaging-05-00052/article_deploy/jimaging-05-00052.pdf" title="fulltext PDF download" data-goatcounter-click="serp-fulltext" data-goatcounter-title="serp-fulltext"> <button class="ui simple right pointing dropdown compact black labeled icon button serp-button"> <i class="icon ia-icon"></i> Web Archive [PDF] </button> </a> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.3390/jimaging5050052"> <button class="ui left aligned compact blue labeled icon button serp-button"> <i class="unlock alternate icon" style="background-color: #fb971f;"></i> mdpi.com </button> </a>

Hyperspectral Image Segmentation by Self Organized Learning-Based Active Contour Model

Fatema A. Albalooshi
<span title="2016-05-01">2016</span> <i title="Deanship of Scientific Research"> <a target="_blank" rel="noopener" href="https://fatcat.wiki/container/uofqh4pfmre5nmdsm4cnpt5x4i" style="color: black;">International Journal of Computing and Digital Systems</a> </i> &nbsp;
In this paper, we present a hyperspectral image segmentation methodology that incorporates the local hyperspectral information into a learning-based active contour level-set function for an accurate object  ...  The proposed algorithm starts with feature extraction from raw hyperspectral images that leverages the principal component analysis (PCA) transformation to reduce dimensionality and select the best sets  ...  Paheding Sidike for assisting in capturing the images for testing and evaluation of the algorithm.  ... 
<span class="external-identifiers"> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.12785/ijcds/050304">doi:10.12785/ijcds/050304</a> <a target="_blank" rel="external noopener" href="https://fatcat.wiki/release/ncdyfdstmzgwxl54rn4dbrncae">fatcat:ncdyfdstmzgwxl54rn4dbrncae</a> </span>
<a target="_blank" rel="noopener" href="https://web.archive.org/web/20220423091902/https://journal.uob.edu.bh/bitstream/handle/123456789/609/IJCDS050304.pdf;jsessionid=C58AC73AB5DBD46CAAAF458355681EE9?sequence=1" title="fulltext PDF download" data-goatcounter-click="serp-fulltext" data-goatcounter-title="serp-fulltext"> <button class="ui simple right pointing dropdown compact black labeled icon button serp-button"> <i class="icon ia-icon"></i> Web Archive [PDF] <div class="menu fulltext-thumbnail"> <img src="https://blobs.fatcat.wiki/thumbnail/pdf/d0/41/d04168b81df774728ef8e03eaa51edcf5e9d6397.180px.jpg" alt="fulltext thumbnail" loading="lazy"> </div> </button> </a> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.12785/ijcds/050304"> <button class="ui left aligned compact blue labeled icon button serp-button"> <i class="unlock alternate icon" style="background-color: #fb971f;"></i> Publisher / doi.org </button> </a>

Detecting aircrafts from satellite images using saliency and conical pyramid based template representation

Samik Banerjee, Nitin Gupta, Sukhendu Das, Pinaki Roy Chowdhury, L K Sinha
<span title="">2016</span> <i title="Springer Science and Business Media LLC"> <a target="_blank" rel="noopener" href="https://fatcat.wiki/container/cuymmrn4wzf6xkpjp5avqt7ol4" style="color: black;">Sadhana (Bangalore)</a> </i> &nbsp;
Failure of modern feature extraction and object detection methods highlight the complexity of the problem.  ...  Then, the concept of unsupervised saliency is used to detect the potential regions of interest, which reduces the search space.  ...  Results are shown on aircrafts on airports from hyperspectral imagery. A deformable part-based model (DPM) has been proposed by Felzenszwalb et al [21] , to detect objects in complex scenes.  ... 
<span class="external-identifiers"> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.1007/s12046-016-0540-5">doi:10.1007/s12046-016-0540-5</a> <a target="_blank" rel="external noopener" href="https://fatcat.wiki/release/kjjvmjakcvepjbfoyaocxvo57q">fatcat:kjjvmjakcvepjbfoyaocxvo57q</a> </span>
<a target="_blank" rel="noopener" href="https://web.archive.org/web/20180226091933/http://www.ias.ac.in:80/article/fulltext/sadh/041/10/1155-1171" title="fulltext PDF download" data-goatcounter-click="serp-fulltext" data-goatcounter-title="serp-fulltext"> <button class="ui simple right pointing dropdown compact black labeled icon button serp-button"> <i class="icon ia-icon"></i> Web Archive [PDF] <div class="menu fulltext-thumbnail"> <img src="https://blobs.fatcat.wiki/thumbnail/pdf/ea/7e/ea7e0b17329636ce1db620caa1d3d3218efcd996.180px.jpg" alt="fulltext thumbnail" loading="lazy"> </div> </button> </a> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.1007/s12046-016-0540-5"> <button class="ui left aligned compact blue labeled icon button serp-button"> <i class="external alternate icon"></i> springer.com </button> </a>

Hyperspectral change detection based on modification of UNet neural networks

Marwa S. Moustafa, Sayed A. Mohamed, Sayed Ahmed, Ayman H. Nasr
<span title="2021-06-17">2021</span> <i title="SPIE-Intl Soc Optical Eng"> <a target="_blank" rel="noopener" href="https://fatcat.wiki/container/432bmec4lfhu5cxeshhodwkttm" style="color: black;">Journal of Applied Remote Sensing</a> </i> &nbsp;
Efficient change detection (CD) is useful in monitoring and managing different situations.  ...  Initially, preprocessing is performed to overcome hyperspectral image noise and the high dimensionality problem.  ...  Hyperspectral image 2 contains hundreds of narrow bands that provide spectral and spatial information. Recently, HSI had been extensively used in classification and object detection tasks.  ... 
<span class="external-identifiers"> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.1117/1.jrs.15.028505">doi:10.1117/1.jrs.15.028505</a> <a target="_blank" rel="external noopener" href="https://fatcat.wiki/release/pv6365hmgbg6ddur7tmfgp45wi">fatcat:pv6365hmgbg6ddur7tmfgp45wi</a> </span>
<a target="_blank" rel="noopener" href="https://web.archive.org/web/20210618023011/https://www.spiedigitallibrary.org/journals/journal-of-applied-remote-sensing/volume-15/issue-2/028505/Hyperspectral-change-detection-based-on-modification-of-UNet-neural-networks/10.1117/1.JRS.15.028505.pdf?SSO=1" title="fulltext PDF download" data-goatcounter-click="serp-fulltext" data-goatcounter-title="serp-fulltext"> <button class="ui simple right pointing dropdown compact black labeled icon button serp-button"> <i class="icon ia-icon"></i> Web Archive [PDF] <div class="menu fulltext-thumbnail"> <img src="https://blobs.fatcat.wiki/thumbnail/pdf/d2/87/d2878d3d2580cad9486cd6e2e629c02fc9de1db7.180px.jpg" alt="fulltext thumbnail" loading="lazy"> </div> </button> </a> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.1117/1.jrs.15.028505"> <button class="ui left aligned compact blue labeled icon button serp-button"> <i class="external alternate icon"></i> Publisher / doi.org </button> </a>

Advances in Hyperspectral Image and Signal Processing: A Comprehensive Overview of the State of the Art

Pedram Ghamisi, Naoto Yokoya, Jun Li, Wenzhi Liao, Sicong Liu, Javier Plaza, Behnood Rasti, Antonio Plaza
<span title="">2017</span> <i title="Institute of Electrical and Electronics Engineers (IEEE)"> <a target="_blank" rel="noopener" href="https://fatcat.wiki/container/xwpybjcqyffjdipbdviyet75c4" style="color: black;">IEEE Geoscience and Remote Sensing Magazine</a> </i> &nbsp;
reduction, resolution enhancement, hyperspectral image denoising and restoration, change detection, and fast computing.  ...  This paper offers a comprehensive tutorial/overview focusing specifically on hyperspectral data analysis, which is categorized into seven broad topics: classification, spectral unmixing, dimensionality  ...  In addition, the authors would like to thank the National Center for Airborne Laser Mapping (NCALM) at the University of Houston for providing the CASI Houston data set, and the IEEE GRSS Image Analysis  ... 
<span class="external-identifiers"> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.1109/mgrs.2017.2762087">doi:10.1109/mgrs.2017.2762087</a> <a target="_blank" rel="external noopener" href="https://fatcat.wiki/release/6ezzye7yyvacbouduqv2f2c7gi">fatcat:6ezzye7yyvacbouduqv2f2c7gi</a> </span>
<a target="_blank" rel="noopener" href="https://web.archive.org/web/20181103055221/https://elib.dlr.de/118583/1/advances-hyperspectral-image.pdf" title="fulltext PDF download" data-goatcounter-click="serp-fulltext" data-goatcounter-title="serp-fulltext"> <button class="ui simple right pointing dropdown compact black labeled icon button serp-button"> <i class="icon ia-icon"></i> Web Archive [PDF] <div class="menu fulltext-thumbnail"> <img src="https://blobs.fatcat.wiki/thumbnail/pdf/07/9b/079b0440cd0c7695fd8bd44338faeb6b38d082cd.180px.jpg" alt="fulltext thumbnail" loading="lazy"> </div> </button> </a> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.1109/mgrs.2017.2762087"> <button class="ui left aligned compact blue labeled icon button serp-button"> <i class="external alternate icon"></i> ieee.com </button> </a>

Guest Editorial: Knowledge-Based Multimedia Computing

Liang Li, Zi Huang, Zheng-Jun Zha, Shuqiang Jiang
<span title="2017-10-02">2017</span> <i title="Springer Nature"> <a target="_blank" rel="noopener" href="https://fatcat.wiki/container/7inqmh346zfjjizjyieh7ijtma" style="color: black;">Multimedia tools and applications</a> </i> &nbsp;
Moreover, some works about dense image captioning, visual relationship detection, visual question answering, knowledge inference, and social network knowledge graph also provide insight into tackling the  ...  Recent progress on visual genome dataset and deep model open an exciting new era of knowledge-based multimedia computing, which can provide a knowledge base of images and capture the complex content with  ...  [11] proposes a novel bottom-up approach to automatically detect salient objects of an image via multiple visual cues.  ... 
<span class="external-identifiers"> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.1007/s11042-017-5212-x">doi:10.1007/s11042-017-5212-x</a> <a target="_blank" rel="external noopener" href="https://fatcat.wiki/release/b7zqwh3xufc7bpxjthousox2be">fatcat:b7zqwh3xufc7bpxjthousox2be</a> </span>
<a target="_blank" rel="noopener" href="https://web.archive.org/web/20180729063459/https://link.springer.com/content/pdf/10.1007%2Fs11042-017-5212-x.pdf" title="fulltext PDF download" data-goatcounter-click="serp-fulltext" data-goatcounter-title="serp-fulltext"> <button class="ui simple right pointing dropdown compact black labeled icon button serp-button"> <i class="icon ia-icon"></i> Web Archive [PDF] <div class="menu fulltext-thumbnail"> <img src="https://blobs.fatcat.wiki/thumbnail/pdf/71/41/7141bbe6de6fcce31d4427b16b53afc4aee3c1d9.180px.jpg" alt="fulltext thumbnail" loading="lazy"> </div> </button> </a> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.1007/s11042-017-5212-x"> <button class="ui left aligned compact blue labeled icon button serp-button"> <i class="external alternate icon"></i> springer.com </button> </a>

Vehicle detection in remote sensing imagery based on salient information and local shape feature

Xinran Yu, Zhenwei Shi
<span title="">2015</span> <i title="Elsevier BV"> <a target="_blank" rel="noopener" href="https://fatcat.wiki/container/ohetbyuuprdrfofxc2dpq22gne" style="color: black;">Optik (Stuttgart)</a> </i> &nbsp;
This approach is tested on real optical panchromatic images as well as the simulated images extracted from hyperspectral images.  ...  Then to validate real vehicles from the predetected vehicle candidates, hypotheses for vehicles are generated using AdaBoost algorithm, with Haar-like feature serving as the local feature descriptor.  ...  Then we employ a hyperspectral algorithm to extract vehicles candidates using the salient information.  ... 
<span class="external-identifiers"> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.1016/j.ijleo.2015.06.024">doi:10.1016/j.ijleo.2015.06.024</a> <a target="_blank" rel="external noopener" href="https://fatcat.wiki/release/sgj3klbv7nbttgd2e64o6zdvoa">fatcat:sgj3klbv7nbttgd2e64o6zdvoa</a> </span>
<a target="_blank" rel="noopener" href="https://web.archive.org/web/20170808131952/http://levir.buaa.edu.cn/publications/car_detection_optik.pdf" title="fulltext PDF download" data-goatcounter-click="serp-fulltext" data-goatcounter-title="serp-fulltext"> <button class="ui simple right pointing dropdown compact black labeled icon button serp-button"> <i class="icon ia-icon"></i> Web Archive [PDF] <div class="menu fulltext-thumbnail"> <img src="https://blobs.fatcat.wiki/thumbnail/pdf/dc/74/dc7442b58025ad43a639577f72249d502c3d707f.180px.jpg" alt="fulltext thumbnail" loading="lazy"> </div> </button> </a> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.1016/j.ijleo.2015.06.024"> <button class="ui left aligned compact blue labeled icon button serp-button"> <i class="external alternate icon"></i> elsevier.com </button> </a>

A Fast and Compact Saliency Score Regression Network Based on Fully Convolutional Network [article]

Xuanyang Xi, Yongkang Luo, Fengfu Li, Peng Wang, Hong Qiao
<span title="2017-02-24">2017</span> <i > arXiv </i> &nbsp; <span class="release-stage" >pre-print</span>
Visual saliency detection aims at identifying the most visually distinctive parts in an image, and serves as a pre-processing step for a variety of computer vision and image processing tasks.  ...  It is an essential application requirement for the saliency detection task.  ...  MSRA-B has 5,000 images and is widely used for the salient object detection task. Most of the images contain only one salient object. B.  ... 
<span class="external-identifiers"> <a target="_blank" rel="external noopener" href="https://arxiv.org/abs/1702.00615v2">arXiv:1702.00615v2</a> <a target="_blank" rel="external noopener" href="https://fatcat.wiki/release/k5cmdlt6m5audhjm4yzun52dum">fatcat:k5cmdlt6m5audhjm4yzun52dum</a> </span>
<a target="_blank" rel="noopener" href="https://web.archive.org/web/20191019060723/https://arxiv.org/pdf/1702.00615v2.pdf" title="fulltext PDF download" data-goatcounter-click="serp-fulltext" data-goatcounter-title="serp-fulltext"> <button class="ui simple right pointing dropdown compact black labeled icon button serp-button"> <i class="icon ia-icon"></i> Web Archive [PDF] <div class="menu fulltext-thumbnail"> <img src="https://blobs.fatcat.wiki/thumbnail/pdf/3b/8a/3b8ad1f2335fc755e5cd75ee5922b8a0d432018a.180px.jpg" alt="fulltext thumbnail" loading="lazy"> </div> </button> </a> <a target="_blank" rel="external noopener" href="https://arxiv.org/abs/1702.00615v2" title="arxiv.org access"> <button class="ui compact blue labeled icon button serp-button"> <i class="file alternate outline icon"></i> arxiv.org </button> </a>

Classification of Imagery Data and Face Recognition Techniques

Neeraj Pratap, Shwetank Shwetank, Vikesh Kumar
<span title="2014-01-16">2014</span> <i title="Foundation of Computer Science"> <a target="_blank" rel="noopener" href="https://fatcat.wiki/container/b637noqf3vhmhjevdfk3h5pdsu" style="color: black;">International Journal of Computer Applications</a> </i> &nbsp;
Different studies on face recognition already have been done and implemented but suffering from a single view point, applications and methods, because of traditional imagery input data.  ...  The key feature of this study is to introduce a new era of face recognition system and technology (input sources, effects, techniques, assessment, limitations etc.) based on Multidimensional Imagery Data  ...  Locality Preserving Projection and its enhanced techniques were used in many fields, such as to recognise an object detection of face and Image analysis.  ... 
<span class="external-identifiers"> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.5120/14876-3272">doi:10.5120/14876-3272</a> <a target="_blank" rel="external noopener" href="https://fatcat.wiki/release/zhbe2odkzrbjxhbs7wsqfqelfy">fatcat:zhbe2odkzrbjxhbs7wsqfqelfy</a> </span>
<a target="_blank" rel="noopener" href="https://web.archive.org/web/20170706140146/http://research.ijcaonline.org/volume85/number10/pxc3893272.pdf" title="fulltext PDF download" data-goatcounter-click="serp-fulltext" data-goatcounter-title="serp-fulltext"> <button class="ui simple right pointing dropdown compact black labeled icon button serp-button"> <i class="icon ia-icon"></i> Web Archive [PDF] <div class="menu fulltext-thumbnail"> <img src="https://blobs.fatcat.wiki/thumbnail/pdf/6a/bd/6abd9a271f31d2e9403ee911f2063819248efd56.180px.jpg" alt="fulltext thumbnail" loading="lazy"> </div> </button> </a> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.5120/14876-3272"> <button class="ui left aligned compact blue labeled icon button serp-button"> <i class="external alternate icon"></i> Publisher / doi.org </button> </a>
&laquo; Previous Showing results 1 &mdash; 15 out of 212 results