Filters








2,414,329 Hits in 3.6 sec

Power domains

M.B. Smyth
<span title="">1978</span> <i title="Elsevier BV"> <a target="_blank" rel="noopener" href="https://fatcat.wiki/container/p6ovb2qpkfenhmb7mcksobrcxq" style="color: black;">Journal of computer and system sciences (Print)</a> </i> &nbsp;
[ ] is the power-domain-forming operation.  ...  To apply the methods of fix-point semantics, then, we should find some way to construe the power set of a domain as itself a domain, with a suitable ordering.  ... 
<span class="external-identifiers"> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.1016/0022-0000(78)90048-x">doi:10.1016/0022-0000(78)90048-x</a> <a target="_blank" rel="external noopener" href="https://fatcat.wiki/release/yegx6kmkhzfpphytnejx7xlu6u">fatcat:yegx6kmkhzfpphytnejx7xlu6u</a> </span>
<a target="_blank" rel="noopener" href="https://web.archive.org/web/20190324031640/https://core.ac.uk/download/pdf/82035345.pdf" title="fulltext PDF download" data-goatcounter-click="serp-fulltext" data-goatcounter-title="serp-fulltext"> <button class="ui simple right pointing dropdown compact black labeled icon button serp-button"> <i class="icon ia-icon"></i> Web Archive [PDF] <div class="menu fulltext-thumbnail"> <img src="https://blobs.fatcat.wiki/thumbnail/pdf/74/f8/74f8e93409ae938e26eacfa5f74938e0d1bcc97f.180px.jpg" alt="fulltext thumbnail" loading="lazy"> </div> </button> </a> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.1016/0022-0000(78)90048-x"> <button class="ui left aligned compact blue labeled icon button serp-button"> <i class="external alternate icon"></i> elsevier.com </button> </a>

Power domain constructions

Reinhold Heckmann
<span title="">1991</span> <i title="Elsevier BV"> <a target="_blank" rel="noopener" href="https://fatcat.wiki/container/hq6x4whtd5hhlhsxzculyeamey" style="color: black;">Science of Computer Programming</a> </i> &nbsp;
., Power domain constructions, Science of Computer Programming 17 (1991) 77-l 17. The variety of power domain constructions proposed in the literature is put into a general algebraic framework.  ...  Power constrructions are considered algebras on a higher level: for every ground domain, there is a power domain whose algebraic structure is specified by means of axioms concerning the algebraic properties  ...  "power domain".  ... 
<span class="external-identifiers"> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.1016/0167-6423(91)90037-x">doi:10.1016/0167-6423(91)90037-x</a> <a target="_blank" rel="external noopener" href="https://fatcat.wiki/release/cyhghs7bajhgbeujdcthwki7cy">fatcat:cyhghs7bajhgbeujdcthwki7cy</a> </span>
<a target="_blank" rel="noopener" href="https://web.archive.org/web/20171004013353/http://publisher-connector.core.ac.uk/resourcesync/data/elsevier/pdf/d64/aHR0cDovL2FwaS5lbHNldmllci5jb20vY29udGVudC9hcnRpY2xlL3BpaS8wMTY3NjQyMzkxOTAwMzd4.pdf" title="fulltext PDF download" data-goatcounter-click="serp-fulltext" data-goatcounter-title="serp-fulltext"> <button class="ui simple right pointing dropdown compact black labeled icon button serp-button"> <i class="icon ia-icon"></i> Web Archive [PDF] <div class="menu fulltext-thumbnail"> <img src="https://blobs.fatcat.wiki/thumbnail/pdf/9c/2f/9c2f6c2347a3b52a05b3fd52f6f8ef3b756e4bde.180px.jpg" alt="fulltext thumbnail" loading="lazy"> </div> </button> </a> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.1016/0167-6423(91)90037-x"> <button class="ui left aligned compact blue labeled icon button serp-button"> <i class="external alternate icon"></i> elsevier.com </button> </a>

Stable power domains

Reinhold Heckmann
<span title="">1994</span> <i title="Elsevier BV"> <a target="_blank" rel="noopener" href="https://fatcat.wiki/container/elaf5sq7lfdxfdejhkqbtz6qoq" style="color: black;">Theoretical Computer Science</a> </i> &nbsp;
From this, we obtain various stable power domain constructions. After handling their properties in general, we concentrate on the stable Plotkin power construction.  ...  For continuous ground domains, it is explicitly described in terms of saturated compact sets. In case of algebraic ground domains, this description is isomorphic to Buneman's Iossless power domains.  ...  Acknowledgments Roberto Amadio asked me whether stable power domain constructions exist. I also like to thank all my colleagues in the group of Prof.  ... 
<span class="external-identifiers"> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.1016/0304-3975(93)00121-k">doi:10.1016/0304-3975(93)00121-k</a> <a target="_blank" rel="external noopener" href="https://fatcat.wiki/release/eczlbmii7vdzxknticqz54zgvi">fatcat:eczlbmii7vdzxknticqz54zgvi</a> </span>
<a target="_blank" rel="noopener" href="https://web.archive.org/web/20170925021534/http://publisher-connector.core.ac.uk/resourcesync/data/elsevier/pdf/205/aHR0cDovL2FwaS5lbHNldmllci5jb20vY29udGVudC9hcnRpY2xlL3BpaS8wMzA0Mzk3NTkzMDAxMjFr.pdf" title="fulltext PDF download" data-goatcounter-click="serp-fulltext" data-goatcounter-title="serp-fulltext"> <button class="ui simple right pointing dropdown compact black labeled icon button serp-button"> <i class="icon ia-icon"></i> Web Archive [PDF] <div class="menu fulltext-thumbnail"> <img src="https://blobs.fatcat.wiki/thumbnail/pdf/96/95/969524c854138b85902ba9dca640252a43d2f9e2.180px.jpg" alt="fulltext thumbnail" loading="lazy"> </div> </button> </a> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.1016/0304-3975(93)00121-k"> <button class="ui left aligned compact blue labeled icon button serp-button"> <i class="external alternate icon"></i> elsevier.com </button> </a>

On -Power Conductor domains [article]

Daniel D. Anderson, Evan Houston, Muhammad Zafrullah
<span title="2017-10-17">2017</span> <i > arXiv </i> &nbsp; <span class="release-stage" >pre-print</span>
We say that D is a -power conductor domain ( -PCD) if for each pair a,b∈ D (0) and for each positive integer n we have Da^n∩ Db^n=((Da∩ Db)^n)^∗.  ...  From this it follows easily that Prüfer domains are d-PCDs (where d denotes the trivial star operation), and v -domains (e.g., Krull domains) are v-PCDs, thereby establishing that a v -domain (e.g., a  ...  For a star operation ⋆ on D, we say that D is a ⋆-power conductor domain (⋆-PCD) if Da n ∩ Db n = ((Da ∩ Db) n ) ⋆ for all a, b ∈ D \ (0) and all positive integers n.  ... 
<span class="external-identifiers"> <a target="_blank" rel="external noopener" href="https://arxiv.org/abs/1710.06521v1">arXiv:1710.06521v1</a> <a target="_blank" rel="external noopener" href="https://fatcat.wiki/release/s43kqgllejfebeqhvrok7lqykq">fatcat:s43kqgllejfebeqhvrok7lqykq</a> </span>
<a target="_blank" rel="noopener" href="https://web.archive.org/web/20191015020616/https://arxiv.org/pdf/1710.06521v1.pdf" title="fulltext PDF download" data-goatcounter-click="serp-fulltext" data-goatcounter-title="serp-fulltext"> <button class="ui simple right pointing dropdown compact black labeled icon button serp-button"> <i class="icon ia-icon"></i> Web Archive [PDF] <div class="menu fulltext-thumbnail"> <img src="https://blobs.fatcat.wiki/thumbnail/pdf/99/b2/99b2a21680bdcc7cd9845e02ecaa626ae7396d87.180px.jpg" alt="fulltext thumbnail" loading="lazy"> </div> </button> </a> <a target="_blank" rel="external noopener" href="https://arxiv.org/abs/1710.06521v1" title="arxiv.org access"> <button class="ui compact blue labeled icon button serp-button"> <i class="file alternate outline icon"></i> arxiv.org </button> </a>

Characterising FS domains by means of power domains

Reinhold Heckmann
<span title="">2001</span> <i title="Elsevier BV"> <a target="_blank" rel="noopener" href="https://fatcat.wiki/container/elaf5sq7lfdxfdejhkqbtz6qoq" style="color: black;">Theoretical Computer Science</a> </i> &nbsp;
FS domains can be characterised using the upper or lower power domain construction.  ...  We did not explore the generalisations of statements (3) -(6) from Section 5 to other power domain constructions.  ...  We also tried to prove that the class of M -FS domains is closed under M . From [2] , it is known that the lower bag construction does not preserve FC, nor FS.  ... 
<span class="external-identifiers"> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.1016/s0304-3975(00)00222-x">doi:10.1016/s0304-3975(00)00222-x</a> <a target="_blank" rel="external noopener" href="https://fatcat.wiki/release/fkycpv7l2jexzom4yv35kmonn4">fatcat:fkycpv7l2jexzom4yv35kmonn4</a> </span>
<a target="_blank" rel="noopener" href="https://web.archive.org/web/20190303052900/https://core.ac.uk/download/pdf/82656608.pdf" title="fulltext PDF download" data-goatcounter-click="serp-fulltext" data-goatcounter-title="serp-fulltext"> <button class="ui simple right pointing dropdown compact black labeled icon button serp-button"> <i class="icon ia-icon"></i> Web Archive [PDF] <div class="menu fulltext-thumbnail"> <img src="https://blobs.fatcat.wiki/thumbnail/pdf/25/41/254180d9f8183de5267a8f4d13e155bea8ceed8b.180px.jpg" alt="fulltext thumbnail" loading="lazy"> </div> </button> </a> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.1016/s0304-3975(00)00222-x"> <button class="ui left aligned compact blue labeled icon button serp-button"> <i class="external alternate icon"></i> elsevier.com </button> </a>

PADD: Power Aware Domain Distribution

Min Yeol Lim, Freeman Rawson, Tyler Bletsch, Vincent W. Freeh
<span title="">2009</span> <i title="IEEE"> <a target="_blank" rel="noopener" href="https://fatcat.wiki/container/s77bfh66ena2znlnuhuruo464a" style="color: black;">2009 29th IEEE International Conference on Distributed Computing Systems</a> </i> &nbsp;
We call our scheme Power-Aware Domain Distribution (PADD).  ...  We propose a more general solution -a technique to save power by dynamically migrating virtual machines and packing them onto fewer physical machines when possible.  ...  We call this coarse-grained packing scheme Power-Aware Domain Distribution (PADD) .  ... 
<span class="external-identifiers"> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.1109/icdcs.2009.47">doi:10.1109/icdcs.2009.47</a> <a target="_blank" rel="external noopener" href="https://dblp.org/rec/conf/icdcs/LimRBF09.html">dblp:conf/icdcs/LimRBF09</a> <a target="_blank" rel="external noopener" href="https://fatcat.wiki/release/x5exz7njgjforcngniosls6bcu">fatcat:x5exz7njgjforcngniosls6bcu</a> </span>
<a target="_blank" rel="noopener" href="https://web.archive.org/web/20170809030521/https://people.engr.ncsu.edu/tkbletsc/pubs/PADD.pdf" title="fulltext PDF download" data-goatcounter-click="serp-fulltext" data-goatcounter-title="serp-fulltext"> <button class="ui simple right pointing dropdown compact black labeled icon button serp-button"> <i class="icon ia-icon"></i> Web Archive [PDF] <div class="menu fulltext-thumbnail"> <img src="https://blobs.fatcat.wiki/thumbnail/pdf/97/06/9706232c82e88cbddad2627e9a08d08f8c2e70de.180px.jpg" alt="fulltext thumbnail" loading="lazy"> </div> </button> </a> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.1109/icdcs.2009.47"> <button class="ui left aligned compact blue labeled icon button serp-button"> <i class="external alternate icon"></i> ieee.com </button> </a>

Factoring formal power series over principal ideal domains [article]

Jesse Elliott
<span title="2012-06-26">2012</span> <i > arXiv </i> &nbsp; <span class="release-stage" >pre-print</span>
We provide an irreducibility test and factoring algorithm (with some qualifications) for formal power series in the unique factorization domain R[[X]], where R is any principal ideal domain.  ...  We also classify all integral domains arising as quotient rings of R[[X]].  ...  Section 7 provides irreducibility criteria for certain distinguished formal power series over an integral domain (Theorem 7.1), yielding an alternative (and shorter) proof of Theorem 1.4.  ... 
<span class="external-identifiers"> <a target="_blank" rel="external noopener" href="https://arxiv.org/abs/1107.4860v4">arXiv:1107.4860v4</a> <a target="_blank" rel="external noopener" href="https://fatcat.wiki/release/rm4pclcskjfkhj6yuctplroxzy">fatcat:rm4pclcskjfkhj6yuctplroxzy</a> </span>
<a target="_blank" rel="noopener" href="https://archive.org/download/arxiv-1107.4860/1107.4860.pdf" title="fulltext PDF download" data-goatcounter-click="serp-fulltext" data-goatcounter-title="serp-fulltext"> <button class="ui simple right pointing dropdown compact black labeled icon button serp-button"> <i class="icon ia-icon"></i> File Archive [PDF] </button> </a> <a target="_blank" rel="external noopener" href="https://arxiv.org/abs/1107.4860v4" title="arxiv.org access"> <button class="ui compact blue labeled icon button serp-button"> <i class="file alternate outline icon"></i> arxiv.org </button> </a>

Krull Domains of Generalized Power Series

Hwankoo Kim, Young Soo Park
<span title="">2001</span> <i title="Elsevier BV"> <a target="_blank" rel="noopener" href="https://fatcat.wiki/container/h7qx4qsc2zf7hiupv27dke5fk4" style="color: black;">Journal of Algebra</a> </i> &nbsp;
For an integral domain D and a torsion-free cancellative strictly subtotally Ž . ww S, F xx ordered monoid S, F , it is shown that the generalized power series ring D is a Krull domain if and only if D  ...  is a Krull domain and S is a Krull monoid.  ...  Let D be any Krull domain. Then by Theorem 2.6, the ring D of generalized power series is a non-Noetherian Krull domain.  ... 
<span class="external-identifiers"> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.1006/jabr.2000.8581">doi:10.1006/jabr.2000.8581</a> <a target="_blank" rel="external noopener" href="https://fatcat.wiki/release/e6vza4smi5csbikceennnxnpii">fatcat:e6vza4smi5csbikceennnxnpii</a> </span>
<a target="_blank" rel="noopener" href="https://web.archive.org/web/20190412193908/https://core.ac.uk/download/pdf/82086116.pdf" title="fulltext PDF download" data-goatcounter-click="serp-fulltext" data-goatcounter-title="serp-fulltext"> <button class="ui simple right pointing dropdown compact black labeled icon button serp-button"> <i class="icon ia-icon"></i> Web Archive [PDF] <div class="menu fulltext-thumbnail"> <img src="https://blobs.fatcat.wiki/thumbnail/pdf/9e/d1/9ed1726b5feee592656b3b8ac54f8aa35a74f9bb.180px.jpg" alt="fulltext thumbnail" loading="lazy"> </div> </button> </a> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.1006/jabr.2000.8581"> <button class="ui left aligned compact blue labeled icon button serp-button"> <i class="external alternate icon"></i> Publisher / doi.org </button> </a>

Municipal Corporations: Police Power: Eminent Domain

<span title="">1910</span> <i title="University of Michigan Department of Law"> <a target="_blank" rel="noopener" href="https://fatcat.wiki/container/xphnijab6nhqbforbxax255ibe" style="color: black;">Michigan law review</a> </i> &nbsp;
JSTOR helps people discover, use, and build upon a wide range of content through a powerful research and teaching platform, and preserves this content for future generations.  ...  That a court has the power to decide as to the question of the reasonableness of a municipal ordinance regulating a condition that is not a nuisance per se or was not so at common law, see State v.  ...  The legislature may assert its police power to make an improvement common to all concerned, at the common expense of all, and the improvement need not be carried out under the law of eminent domain.  ... 
<span class="external-identifiers"> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.2307/1276336">doi:10.2307/1276336</a> <a target="_blank" rel="external noopener" href="https://fatcat.wiki/release/dlhttao5wbhsrfngsceiu5besy">fatcat:dlhttao5wbhsrfngsceiu5besy</a> </span>
<a target="_blank" rel="noopener" href="https://archive.org/download/jstor-1276336/1276336.pdf" title="fulltext PDF download" data-goatcounter-click="serp-fulltext" data-goatcounter-title="serp-fulltext"> <button class="ui simple right pointing dropdown compact black labeled icon button serp-button"> <i class="icon ia-icon"></i> File Archive [PDF] </button> </a> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.2307/1276336"> <button class="ui left aligned compact blue labeled icon button serp-button"> <i class="external alternate icon"></i> jstor.org </button> </a>

Power Domains and Iterated Function Systems

Abbas Edalat
<span title="">1996</span> <i title="Elsevier BV"> <a target="_blank" rel="noopener" href="https://fatcat.wiki/container/joe2ngto45hbnl3pncnesnq344" style="color: black;">Information and Computation</a> </i> &nbsp;
Based on a domain-theoretic model, which uses the Plotkin power domain and the probabilistic power domain respectively, we prove the existence and uniqueness of the attractor of a weakly hyperbolic IFS  ...  The Plotkin power domain or the convex power domain CD of D is then defined to be the quotient (F (D) Â$ , C =EMÂ$ ), where the equivalence relation $ on F (D) is given by C 1 $C 2 iff C 1 C = EM C 2 and  ...  Weakly Hyperbolic IFS In [15] , power domains were used to construct domaintheoretic models for IFSs and IFSs with probabilities.  ... 
<span class="external-identifiers"> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.1006/inco.1996.0014">doi:10.1006/inco.1996.0014</a> <a target="_blank" rel="external noopener" href="https://fatcat.wiki/release/tvuf67rzwnd6ndd6l6a5tkqcw4">fatcat:tvuf67rzwnd6ndd6l6a5tkqcw4</a> </span>
<a target="_blank" rel="noopener" href="https://web.archive.org/web/20170705101943/http://www.doc.ic.ac.uk/~ae/papers/powerf.pdf" title="fulltext PDF download" data-goatcounter-click="serp-fulltext" data-goatcounter-title="serp-fulltext"> <button class="ui simple right pointing dropdown compact black labeled icon button serp-button"> <i class="icon ia-icon"></i> Web Archive [PDF] <div class="menu fulltext-thumbnail"> <img src="https://blobs.fatcat.wiki/thumbnail/pdf/64/d5/64d5d998595aeae2f2a5c2bddaccacac270496c5.180px.jpg" alt="fulltext thumbnail" loading="lazy"> </div> </button> </a> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.1006/inco.1996.0014"> <button class="ui left aligned compact blue labeled icon button serp-button"> <i class="external alternate icon"></i> Publisher / doi.org </button> </a>

Power series rings over Prüfer domains

Jimmy Arnold
<span title="1973-01-01">1973</span> <i title="Mathematical Sciences Publishers"> <a target="_blank" rel="noopener" href="https://fatcat.wiki/container/7bfevq4qbjckrhwmr4edm6npze" style="color: black;">Pacific Journal of Mathematics</a> </i> &nbsp;
Moreover, he has shown that dim R [X] = n + 1 if R is a Prϋfer domain. The author has shown that if V is a rank one nondiscrete valuation ring, then dim F[[X]] = oo.  ...  The principal result of this paper is that if D is a Priifer domain with dim D = n, then either dim 2>[[X]] = n + 1 or άimD[[X]] = oo, and necessary and sufficient conditions are given. Proof.  ...  Now w(d) > 0 implies POWER SERIES RINGS OVER PRUFER DOMAINS 7 that deP a and hence, that v*(d) > 0. Suppose that D is an SFT-ring and let P a e Π.  ... 
<span class="external-identifiers"> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.2140/pjm.1973.44.1">doi:10.2140/pjm.1973.44.1</a> <a target="_blank" rel="external noopener" href="https://fatcat.wiki/release/653zfxvelrbjpkyeeuoun2dpcu">fatcat:653zfxvelrbjpkyeeuoun2dpcu</a> </span>
<a target="_blank" rel="noopener" href="https://web.archive.org/web/20180724075001/https://msp.org/pjm/1973/44-1/pjm-v44-n1-p01-s.pdf" title="fulltext PDF download" data-goatcounter-click="serp-fulltext" data-goatcounter-title="serp-fulltext"> <button class="ui simple right pointing dropdown compact black labeled icon button serp-button"> <i class="icon ia-icon"></i> Web Archive [PDF] <div class="menu fulltext-thumbnail"> <img src="https://blobs.fatcat.wiki/thumbnail/pdf/ee/2a/ee2acfa9533365cebbf4e7aecb4d000638208529.180px.jpg" alt="fulltext thumbnail" loading="lazy"> </div> </button> </a> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.2140/pjm.1973.44.1"> <button class="ui left aligned compact blue labeled icon button serp-button"> <i class="unlock alternate icon" style="background-color: #fb971f;"></i> Publisher / doi.org </button> </a>

Convex power domain and vietoris space

Jihua Liang, Hui Kou
<span title="">2004</span> <i title="Elsevier BV"> <a target="_blank" rel="noopener" href="https://fatcat.wiki/container/nkrwe4pmozafvnd72yxufztpku" style="color: black;">Computers and Mathematics with Applications</a> </i> &nbsp;
In this paper, the maximal point spaces (MP-space in short) of convex power domains are investigated. Some characterizations of the maximal points of convex power domains are obtained.  ...  Finally, an example is given to show that even for a weakly compact continuous domain, its convex power domain need not be a domain hull of the maximal points. (g)  ...  In this paper, the maximal point spaces of convex power domains on continuous domains are discussed and some characterizations of the maximal points of convex power domains are obtained.  ... 
<span class="external-identifiers"> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.1016/s0898-1221(04)90044-2">doi:10.1016/s0898-1221(04)90044-2</a> <a target="_blank" rel="external noopener" href="https://fatcat.wiki/release/ltx4e3whdnfzjacji3rjf6a2ne">fatcat:ltx4e3whdnfzjacji3rjf6a2ne</a> </span>
<a target="_blank" rel="noopener" href="https://web.archive.org/web/20190327031258/https://core.ac.uk/download/pdf/82065342.pdf" title="fulltext PDF download" data-goatcounter-click="serp-fulltext" data-goatcounter-title="serp-fulltext"> <button class="ui simple right pointing dropdown compact black labeled icon button serp-button"> <i class="icon ia-icon"></i> Web Archive [PDF] <div class="menu fulltext-thumbnail"> <img src="https://blobs.fatcat.wiki/thumbnail/pdf/82/e8/82e898cf0c522ea9ff6668b60c5cc38ebd1c47b9.180px.jpg" alt="fulltext thumbnail" loading="lazy"> </div> </button> </a> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.1016/s0898-1221(04)90044-2"> <button class="ui left aligned compact blue labeled icon button serp-button"> <i class="external alternate icon"></i> elsevier.com </button> </a>

Power domains and second-order predicates

Reinhold Heckmann
<span title="">1993</span> <i title="Elsevier BV"> <a target="_blank" rel="noopener" href="https://fatcat.wiki/container/elaf5sq7lfdxfdejhkqbtz6qoq" style="color: black;">Theoretical Computer Science</a> </i> &nbsp;
., Power domains and second-order predicates, Theoretical Computer Science 111 (1993) 59-88.  ...  Lower, upper. sandwich, mixed, and convex power domains are isomorphic to domains of secondorder predicates mapping predicates on the ground domain to logical values in a semiring.  ...  power domains.  ... 
<span class="external-identifiers"> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.1016/0304-3975(93)90182-s">doi:10.1016/0304-3975(93)90182-s</a> <a target="_blank" rel="external noopener" href="https://fatcat.wiki/release/lbfx6rtnebeudadmz7eu5dclhi">fatcat:lbfx6rtnebeudadmz7eu5dclhi</a> </span>
<a target="_blank" rel="noopener" href="https://web.archive.org/web/20170928081117/http://publisher-connector.core.ac.uk/resourcesync/data/elsevier/pdf/622/aHR0cDovL2FwaS5lbHNldmllci5jb20vY29udGVudC9hcnRpY2xlL3BpaS8wMzA0Mzk3NTkzOTAxODJz.pdf" title="fulltext PDF download" data-goatcounter-click="serp-fulltext" data-goatcounter-title="serp-fulltext"> <button class="ui simple right pointing dropdown compact black labeled icon button serp-button"> <i class="icon ia-icon"></i> Web Archive [PDF] <div class="menu fulltext-thumbnail"> <img src="https://blobs.fatcat.wiki/thumbnail/pdf/ca/22/ca22c2a8b4691ab011501d25a4d96872522487bd.180px.jpg" alt="fulltext thumbnail" loading="lazy"> </div> </button> </a> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.1016/0304-3975(93)90182-s"> <button class="ui left aligned compact blue labeled icon button serp-button"> <i class="external alternate icon"></i> elsevier.com </button> </a>

Power series over generalized Krull domains [article]

Elad Paran, Michael Temkin
<span title="2008-10-06">2008</span> <i > arXiv </i> &nbsp; <span class="release-stage" >pre-print</span>
Is the ring R[[X]] of formal power series over R a generalized Krull domain? We show that the answer is negative.  ...  We resolve an open problem in commutative algebra and Field Arithmetic, posed by Jarden -- Let R be a generalized Krull domain.  ...  If R is a Krull domain, so is the ring of polynomials R[X], as well as the ring of formal power series R [[X] ] [Mat2, Theorem 12.4(iii) ].  ... 
<span class="external-identifiers"> <a target="_blank" rel="external noopener" href="https://arxiv.org/abs/0810.1028v1">arXiv:0810.1028v1</a> <a target="_blank" rel="external noopener" href="https://fatcat.wiki/release/dk7jstbhtbhb7cetmoskuntnuu">fatcat:dk7jstbhtbhb7cetmoskuntnuu</a> </span>
<a target="_blank" rel="noopener" href="https://archive.org/download/arxiv-0810.1028/0810.1028.pdf" title="fulltext PDF download" data-goatcounter-click="serp-fulltext" data-goatcounter-title="serp-fulltext"> <button class="ui simple right pointing dropdown compact black labeled icon button serp-button"> <i class="icon ia-icon"></i> File Archive [PDF] </button> </a> <a target="_blank" rel="external noopener" href="https://arxiv.org/abs/0810.1028v1" title="arxiv.org access"> <button class="ui compact blue labeled icon button serp-button"> <i class="file alternate outline icon"></i> arxiv.org </button> </a>

Geometric Algebra Power Theory in Time Domain [article]

F. G. Montoya, J. Roldán-Pérez, A. Alcayde, F. M. Arrabal-Campos, R. Baños
<span title="2020-05-25">2020</span> <i > arXiv </i> &nbsp; <span class="release-stage" >pre-print</span>
In this paper, the power flow in electrical systems is modelled in the time domain by using Geometric Algebra and the Hilbert Transform.  ...  The proposed method can be used for sinusoidal and non-sinusoidal power supplies, non-linear loads, single- and multi-phase systems, and it provides meaningful engineering results with a compact formulation  ...  In this case, a frequency-domain approach should be used to calculate the contribution of each harmonic (one by one) to the geometric apparent power [30] . B.  ... 
<span class="external-identifiers"> <a target="_blank" rel="external noopener" href="https://arxiv.org/abs/2002.05458v4">arXiv:2002.05458v4</a> <a target="_blank" rel="external noopener" href="https://fatcat.wiki/release/ungbhwnxmzbctl7b7v5ly4zs6u">fatcat:ungbhwnxmzbctl7b7v5ly4zs6u</a> </span>
<a target="_blank" rel="noopener" href="https://web.archive.org/web/20200527001716/https://arxiv.org/pdf/2002.05458v4.pdf" title="fulltext PDF download" data-goatcounter-click="serp-fulltext" data-goatcounter-title="serp-fulltext"> <button class="ui simple right pointing dropdown compact black labeled icon button serp-button"> <i class="icon ia-icon"></i> Web Archive [PDF] </button> </a> <a target="_blank" rel="external noopener" href="https://arxiv.org/abs/2002.05458v4" title="arxiv.org access"> <button class="ui compact blue labeled icon button serp-button"> <i class="file alternate outline icon"></i> arxiv.org </button> </a>
&laquo; Previous Showing results 1 &mdash; 15 out of 2,414,329 results