The Internet Archive has a preservation copy of this work in our general collections. The file type is <code>application/pdf</code>.
Filters
On Whitehead precovers
[article]
<span title="2000-11-27">2000</span>
<i >
arXiv
</i>
<span class="release-stage" >pre-print</span>
As before, let M = ϕ[F ], M α = ϕ[F α ], M α,τ = ϕ[F α,τ ] and let C be a club such that for α ∈ C, M α ⊆ A α . Fix δ 1 in C ∩ S. Let δ be δ + 1 and choose γ ∈ C such that γ > δ. ...
There is a club C ′ in µ such that for ν ∈ C ′ , M δ 1 ,ν ⊆ B γ,ν and A δ+1 ∩ B γ,ν ⊆ B δ+1,ν . ...
<span class="external-identifiers">
<a target="_blank" rel="external noopener" href="https://arxiv.org/abs/math/0011228v1">arXiv:math/0011228v1</a>
<a target="_blank" rel="external noopener" href="https://fatcat.wiki/release/cm5ctern6bbobamj3tsbkl4cyi">fatcat:cm5ctern6bbobamj3tsbkl4cyi</a>
</span>
<a target="_blank" rel="noopener" href="https://archive.org/download/arxiv-math0011228/math0011228.pdf" title="fulltext PDF download" data-goatcounter-click="serp-fulltext" data-goatcounter-title="serp-fulltext">
<button class="ui simple right pointing dropdown compact black labeled icon button serp-button">
<i class="icon ia-icon"></i>
File Archive
[PDF]
<div class="menu fulltext-thumbnail">
<img src="https://blobs.fatcat.wiki/thumbnail/pdf/52/80/52808905654107ca7de052882bdef58b12ed0e47.180px.jpg" alt="fulltext thumbnail" loading="lazy">
</div>
</button>
</a>
<a target="_blank" rel="external noopener" href="https://arxiv.org/abs/math/0011228v1" title="arxiv.org access">
<button class="ui compact blue labeled icon button serp-button">
<i class="file alternate outline icon"></i>
arxiv.org
</button>
</a>
Explicitly nonstandard uniserial modules
[article]
<span title="1993-01-15">1993</span>
<i >
arXiv
</i>
<span class="release-stage" >pre-print</span>
σ , c ρ ∈ R * satisfy c ρ ≡ c σ e ρ σ (mod r σ ), then f σ (c σ ) < f ρ (c ρ ). ...
,S 1 ≤S 2 if and only if there is a cub C such that S 1 ∩ C ⊆ S 2 ∩ C. ...
We first define, by induction on σ, f σ (c σ ) -or, more precisely, f σ (c σ + r σ R) -for all c σ ∈ R * such that c σ ≡ z 0 e σ 0 (mod r 0 ). ...
<span class="external-identifiers">
<a target="_blank" rel="external noopener" href="https://arxiv.org/abs/math/9301207v1">arXiv:math/9301207v1</a>
<a target="_blank" rel="external noopener" href="https://fatcat.wiki/release/p44ss2uc4jhv7cznrpzssdgycm">fatcat:p44ss2uc4jhv7cznrpzssdgycm</a>
</span>
<a target="_blank" rel="noopener" href="https://archive.org/download/arxiv-math9301207/math9301207.pdf" title="fulltext PDF download" data-goatcounter-click="serp-fulltext" data-goatcounter-title="serp-fulltext">
<button class="ui simple right pointing dropdown compact black labeled icon button serp-button">
<i class="icon ia-icon"></i>
File Archive
[PDF]
<div class="menu fulltext-thumbnail">
<img src="https://blobs.fatcat.wiki/thumbnail/pdf/24/a3/24a3440b79a724144dd043a0bbe0c6e99c52ae08.180px.jpg" alt="fulltext thumbnail" loading="lazy">
</div>
</button>
</a>
<a target="_blank" rel="external noopener" href="https://arxiv.org/abs/math/9301207v1" title="arxiv.org access">
<button class="ui compact blue labeled icon button serp-button">
<i class="file alternate outline icon"></i>
arxiv.org
</button>
</a>
A non-reflexive Whitehead group
[article]
<span title="1999-08-29">1999</span>
<i >
arXiv
</i>
<span class="release-stage" >pre-print</span>
y) = t ∧ḣ(y + K) = c ℓ for ℓ = 1, 2, then c 1 = c 2 . which is a contradiction of the choice of m. ...
Let p * denote the "heart" of {p δ : δ ∈ S ′ }; that is, dom(p * ) = C and for all µ ∈ C, dom(p * (µ)) = dom(p δ 1 (µ)) ∩ dom(p δ 2 (µ)) (= C µ , say) for δ 1 = δ 2 ∈ S ′ ; and p * (µ) = p δ1 (µ) ↾ C µ ...
1 − c 2 ...
<span class="external-identifiers">
<a target="_blank" rel="external noopener" href="https://arxiv.org/abs/math/9908157v1">arXiv:math/9908157v1</a>
<a target="_blank" rel="external noopener" href="https://fatcat.wiki/release/ztzehpziyrc5rfyyd7n7762wj4">fatcat:ztzehpziyrc5rfyyd7n7762wj4</a>
</span>
<a target="_blank" rel="noopener" href="https://archive.org/download/arxiv-math9908157/math9908157.pdf" title="fulltext PDF download" data-goatcounter-click="serp-fulltext" data-goatcounter-title="serp-fulltext">
<button class="ui simple right pointing dropdown compact black labeled icon button serp-button">
<i class="icon ia-icon"></i>
File Archive
[PDF]
</button>
</a>
<a target="_blank" rel="external noopener" href="https://arxiv.org/abs/math/9908157v1" title="arxiv.org access">
<button class="ui compact blue labeled icon button serp-button">
<i class="file alternate outline icon"></i>
arxiv.org
</button>
</a>
Modules with Strange Decomposition Properties
[chapter]
<span title="">2000</span>
<i title="Birkhäuser Basel">
Infinite Length Modules
</i>
II Are A; B 2 C isomorphic whenever A 2 is isomorphic to B 2 ? ...
answers to the following two Kaplansky test problems cf. 22, pp. 12f : I Are A; B 2 C isomorphic whenever A is isomorphic to a direct summand of B and B is isomorphic to a direct summand of A? ...
g will be in C . For any 1 ; :::; n in End R M, C 1 ::: C n is a club so E C 1 ::: C n is non-empty and we can choose in C 1 ::: C n so that also 2 E. ...
<span class="external-identifiers">
<a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.1007/978-3-0348-8426-6_2">doi:10.1007/978-3-0348-8426-6_2</a>
<a target="_blank" rel="external noopener" href="https://fatcat.wiki/release/wabg3qygnbcy7ls5yq2vmiibu4">fatcat:wabg3qygnbcy7ls5yq2vmiibu4</a>
</span>
<a target="_blank" rel="noopener" href="https://web.archive.org/web/20110331223952/http://math.uci.edu/~peklof/Modules.pdf" title="fulltext PDF download" data-goatcounter-click="serp-fulltext" data-goatcounter-title="serp-fulltext">
<button class="ui simple right pointing dropdown compact black labeled icon button serp-button">
<i class="icon ia-icon"></i>
Web Archive
[PDF]
<div class="menu fulltext-thumbnail">
<img src="https://blobs.fatcat.wiki/thumbnail/pdf/18/6c/186c79a504a63f85c5f878eebfb557d2319ef9e8.180px.jpg" alt="fulltext thumbnail" loading="lazy">
</div>
</button>
</a>
<a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.1007/978-3-0348-8426-6_2">
<button class="ui left aligned compact blue labeled icon button serp-button">
<i class="external alternate icon"></i>
Publisher / doi.org
</button>
</a>
Absolutely rigid systems and absolutely indecomposable groups
[article]
<span title="2000-10-27">2000</span>
<i >
arXiv
</i>
<span class="release-stage" >pre-print</span>
Φ ν (σ ↾ k) ⊆ Φ µ (θ(σ ↾ k)) = Φ µ ( f (0), ..., f (k − 1) ) every quantifier-free formula satisfied by a, b, c in A ν (e.g. a = 0, a − b = c, ab = c) is satisfied by f (a), f (b), f (c) in A µ . ...
Thus an atomic formula is one of the form n i=0 c i x i = 0 where the c i are integers and the x i are variables. ...
c)a α z↾m−1 , which is impossible unless c = c ′ . ...
<span class="external-identifiers">
<a target="_blank" rel="external noopener" href="https://arxiv.org/abs/math/0010264v1">arXiv:math/0010264v1</a>
<a target="_blank" rel="external noopener" href="https://fatcat.wiki/release/j3tilesbn5e4din5puhoayjmlq">fatcat:j3tilesbn5e4din5puhoayjmlq</a>
</span>
<a target="_blank" rel="noopener" href="https://archive.org/download/arxiv-math0010264/math0010264.pdf" title="fulltext PDF download" data-goatcounter-click="serp-fulltext" data-goatcounter-title="serp-fulltext">
<button class="ui simple right pointing dropdown compact black labeled icon button serp-button">
<i class="icon ia-icon"></i>
File Archive
[PDF]
</button>
</a>
<a target="_blank" rel="external noopener" href="https://arxiv.org/abs/math/0010264v1" title="arxiv.org access">
<button class="ui compact blue labeled icon button serp-button">
<i class="file alternate outline icon"></i>
arxiv.org
</button>
</a>
On Whitehead modules
<span title="">1991</span>
<i title="Elsevier BV">
<a target="_blank" rel="noopener" href="https://fatcat.wiki/container/h7qx4qsc2zf7hiupv27dke5fk4" style="color: black;">Journal of Algebra</a>
</i>
EKLOF AND SHELAH (b) P=P, * Paa, where, in VPs, P,, is the direct limit of P;1 (/I E Ord), with Pz the Easton support iteration (P,*, 0: : j< 8, i < fi) where &=o,+i. ...
EKLOF AND SHELAH (We could, in fact, prove that MT is not the direct summand of an F-free module.) It suflices to prove that for 6 E E {r > 6 : AT/A8 is not F-free} is stationary in 1. ...
<span class="external-identifiers">
<a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.1016/0021-8693(91)90321-x">doi:10.1016/0021-8693(91)90321-x</a>
<a target="_blank" rel="external noopener" href="https://fatcat.wiki/release/hpbems5p6ndslaqlza6u7wfz7u">fatcat:hpbems5p6ndslaqlza6u7wfz7u</a>
</span>
<a target="_blank" rel="noopener" href="https://web.archive.org/web/20171002080823/http://publisher-connector.core.ac.uk/resourcesync/data/elsevier/pdf/b38/aHR0cDovL2FwaS5lbHNldmllci5jb20vY29udGVudC9hcnRpY2xlL3BpaS8wMDIxODY5MzkxOTAzMjF4.pdf" title="fulltext PDF download" data-goatcounter-click="serp-fulltext" data-goatcounter-title="serp-fulltext">
<button class="ui simple right pointing dropdown compact black labeled icon button serp-button">
<i class="icon ia-icon"></i>
Web Archive
[PDF]
<div class="menu fulltext-thumbnail">
<img src="https://blobs.fatcat.wiki/thumbnail/pdf/cb/78/cb782789178a9b5409fb3433524b2bf1ed6eec04.180px.jpg" alt="fulltext thumbnail" loading="lazy">
</div>
</button>
</a>
<a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.1016/0021-8693(91)90321-x">
<button class="ui left aligned compact blue labeled icon button serp-button">
<i class="external alternate icon"></i>
elsevier.com
</button>
</a>
Test Groups for Whitehead Groups
[article]
<span title="2007-02-11">2007</span>
<i >
arXiv
</i>
<span class="release-stage" >pre-print</span>
Notice that if C is a non-zero separable torsion-free group, then Ext(A, C) = 0 implies A is a W-group (since Z is a summand of C), but the converse may not hold, that is, Ext(A, C) may be non-zero for ...
We are looking for groups C other than Z such that a group A is a W-group if and only if Ext(A, C) = 0; such a C will be called a test group for Whitehead groups, or a W-test group for short. ...
<span class="external-identifiers">
<a target="_blank" rel="external noopener" href="https://arxiv.org/abs/math/0702293v1">arXiv:math/0702293v1</a>
<a target="_blank" rel="external noopener" href="https://fatcat.wiki/release/no43kn3tmjf3piwonlv6535jpu">fatcat:no43kn3tmjf3piwonlv6535jpu</a>
</span>
<a target="_blank" rel="noopener" href="https://archive.org/download/arxiv-math0702293/math0702293.pdf" title="fulltext PDF download" data-goatcounter-click="serp-fulltext" data-goatcounter-title="serp-fulltext">
<button class="ui simple right pointing dropdown compact black labeled icon button serp-button">
<i class="icon ia-icon"></i>
File Archive
[PDF]
<div class="menu fulltext-thumbnail">
<img src="https://blobs.fatcat.wiki/thumbnail/pdf/af/33/af338820d98f44d4c66e4755d097f1323b2dca7d.180px.jpg" alt="fulltext thumbnail" loading="lazy">
</div>
</button>
</a>
<a target="_blank" rel="external noopener" href="https://arxiv.org/abs/math/0702293v1" title="arxiv.org access">
<button class="ui compact blue labeled icon button serp-button">
<i class="file alternate outline icon"></i>
arxiv.org
</button>
</a>
On invariants for omega_1-separable groups
[article]
<span title="1995-01-15">1995</span>
<i >
arXiv
</i>
<span class="release-stage" >pre-print</span>
Let C δ,n = K βn,βn+1 . ...
Lemma 1 Suppose A ⊆ B and A ′ ⊆ B ′ ⊆ C ′ where C ′ /B ′ is ℵ 1 -free, B/A is countable and (B/A) * = 0. If θ : B → C ′ such that θ[A] ⊆ A ′ , then θ[B] ⊆ B ′ . ...
<span class="external-identifiers">
<a target="_blank" rel="external noopener" href="https://arxiv.org/abs/math/9501223v1">arXiv:math/9501223v1</a>
<a target="_blank" rel="external noopener" href="https://fatcat.wiki/release/ig35536guvd3bj7g3t7lyrz3bu">fatcat:ig35536guvd3bj7g3t7lyrz3bu</a>
</span>
<a target="_blank" rel="noopener" href="https://archive.org/download/arxiv-math9501223/math9501223.pdf" title="fulltext PDF download" data-goatcounter-click="serp-fulltext" data-goatcounter-title="serp-fulltext">
<button class="ui simple right pointing dropdown compact black labeled icon button serp-button">
<i class="icon ia-icon"></i>
File Archive
[PDF]
</button>
</a>
<a target="_blank" rel="external noopener" href="https://arxiv.org/abs/math/9501223v1" title="arxiv.org access">
<button class="ui compact blue labeled icon button serp-button">
<i class="file alternate outline icon"></i>
arxiv.org
</button>
</a>
New non-free Whitehead groups (corrected version)
[article]
<span title="1997-11-15">1997</span>
<i >
arXiv
</i>
<span class="release-stage" >pre-print</span>
Let p * denote the "heart" of the ∆-system; that is, dom(p * ) = C and for all µ ∈ C, dom(p * (µ)) = dom(p ξ 1 (µ)) ∩ dom(p ξ 2 (µ)) (= C µ , say) for ξ 1 = ξ 2 ∈ S; and p * (µ) ↾ C µ = p ξ 1 (µ) ↾ C µ ...
Moreover, for every j ∈ C, {dom(p ξ (j)) : ξ ∈ S} forms a ∆-system and for all ξ 1 = ξ 2 in S, p ξ 1 (j) and p ξ 2 (j) agree on dom(p ξ 1 (j)) ∩ dom(p ξ 2 (j)). ...
<span class="external-identifiers">
<a target="_blank" rel="external noopener" href="https://arxiv.org/abs/math/9711221v1">arXiv:math/9711221v1</a>
<a target="_blank" rel="external noopener" href="https://fatcat.wiki/release/i6ts4rvowrhd3a7ldxqa7ohqfm">fatcat:i6ts4rvowrhd3a7ldxqa7ohqfm</a>
</span>
<a target="_blank" rel="noopener" href="https://archive.org/download/arxiv-math9711221/math9711221.pdf" title="fulltext PDF download" data-goatcounter-click="serp-fulltext" data-goatcounter-title="serp-fulltext">
<button class="ui simple right pointing dropdown compact black labeled icon button serp-button">
<i class="icon ia-icon"></i>
File Archive
[PDF]
<div class="menu fulltext-thumbnail">
<img src="https://blobs.fatcat.wiki/thumbnail/pdf/31/54/31544da5939f72d6b74da43368659602ea301098.180px.jpg" alt="fulltext thumbnail" loading="lazy">
</div>
</button>
</a>
<a target="_blank" rel="external noopener" href="https://arxiv.org/abs/math/9711221v1" title="arxiv.org access">
<button class="ui compact blue labeled icon button serp-button">
<i class="file alternate outline icon"></i>
arxiv.org
</button>
</a>
Whitehead modules over large principal ideal domains
[article]
<span title="2000-11-27">2000</span>
<i >
arXiv
</i>
<span class="release-stage" >pre-print</span>
Thus b = p n c for some c ∈ R ′ and n ≥ m. But then b t = p n c t ∈ p m R ′ (p) . Therefore I = p m R ′ (p) . Proof of Theorem 1. Let λ = 2 ℵ1 . ...
<span class="external-identifiers">
<a target="_blank" rel="external noopener" href="https://arxiv.org/abs/math/0011230v1">arXiv:math/0011230v1</a>
<a target="_blank" rel="external noopener" href="https://fatcat.wiki/release/bz5k626vhffulg2odqzi4gqsba">fatcat:bz5k626vhffulg2odqzi4gqsba</a>
</span>
<a target="_blank" rel="noopener" href="https://archive.org/download/arxiv-math0011230/math0011230.pdf" title="fulltext PDF download" data-goatcounter-click="serp-fulltext" data-goatcounter-title="serp-fulltext">
<button class="ui simple right pointing dropdown compact black labeled icon button serp-button">
<i class="icon ia-icon"></i>
File Archive
[PDF]
</button>
</a>
<a target="_blank" rel="external noopener" href="https://arxiv.org/abs/math/0011230v1" title="arxiv.org access">
<button class="ui compact blue labeled icon button serp-button">
<i class="file alternate outline icon"></i>
arxiv.org
</button>
</a>
On a conjecture regarding nonstandard uniserial modules
[article]
<span title="1993-08-15">1993</span>
<i >
arXiv
</i>
<span class="release-stage" >pre-print</span>
We define the c σ by induction. Let c 0 = 1; if c σ has been defined, let c σ+1 = e σ+1 σ c σ + X (σ,i) . ...
Then we have c δ ≡ e δ σ c σ ≡ u σẽ δ σ c σ and d δ ≡ d σẽ δ σ , so f ≡ u −1 σ c −1 σ d σ . ...
<span class="external-identifiers">
<a target="_blank" rel="external noopener" href="https://arxiv.org/abs/math/9308211v1">arXiv:math/9308211v1</a>
<a target="_blank" rel="external noopener" href="https://fatcat.wiki/release/blkbvuqamnfclifdufktexg52i">fatcat:blkbvuqamnfclifdufktexg52i</a>
</span>
<a target="_blank" rel="noopener" href="https://archive.org/download/arxiv-math9308211/math9308211.pdf" title="fulltext PDF download" data-goatcounter-click="serp-fulltext" data-goatcounter-title="serp-fulltext">
<button class="ui simple right pointing dropdown compact black labeled icon button serp-button">
<i class="icon ia-icon"></i>
File Archive
[PDF]
<div class="menu fulltext-thumbnail">
<img src="https://blobs.fatcat.wiki/thumbnail/pdf/99/d6/99d6210e2d49a6e2be6678c81aa290a73ae215b4.180px.jpg" alt="fulltext thumbnail" loading="lazy">
</div>
</button>
</a>
<a target="_blank" rel="external noopener" href="https://arxiv.org/abs/math/9308211v1" title="arxiv.org access">
<button class="ui compact blue labeled icon button serp-button">
<i class="file alternate outline icon"></i>
arxiv.org
</button>
</a>
Torsion modules, lattices and p-points
[article]
<span title="1997-03-15">1997</span>
<i >
arXiv
</i>
<span class="release-stage" >pre-print</span>
The claim concerning a realization of L ′ in case L is the dual ideal lattice of a domain, is an immediate consequence of part (c) of Corollary C of [8] . 2 proof of Theorem 5. ...
By Corollary C of [8] , there exists a complete upper subsemilattice L ′ of L which is isomorphic to an upper semilattice of the form L(U ) for some ultrafilter U on ω. ...
<span class="external-identifiers">
<a target="_blank" rel="external noopener" href="https://arxiv.org/abs/math/9703221v1">arXiv:math/9703221v1</a>
<a target="_blank" rel="external noopener" href="https://fatcat.wiki/release/dk72i24r4rf37poe3za3qjcvhi">fatcat:dk72i24r4rf37poe3za3qjcvhi</a>
</span>
<a target="_blank" rel="noopener" href="https://archive.org/download/arxiv-math9703221/math9703221.pdf" title="fulltext PDF download" data-goatcounter-click="serp-fulltext" data-goatcounter-title="serp-fulltext">
<button class="ui simple right pointing dropdown compact black labeled icon button serp-button">
<i class="icon ia-icon"></i>
File Archive
[PDF]
</button>
</a>
<a target="_blank" rel="external noopener" href="https://arxiv.org/abs/math/9703221v1" title="arxiv.org access">
<button class="ui compact blue labeled icon button serp-button">
<i class="file alternate outline icon"></i>
arxiv.org
</button>
</a>
On the cogeneration of cotorsion pairs
[article]
<span title="2004-05-07">2004</span>
<i >
arXiv
</i>
<span class="release-stage" >pre-print</span>
Enochs' solution of the Flat Cover Conjecture was extended as follows: (*) If C is a cotorsion pair generated by a class of cotorsion modules, then C is cogenerated by a set. ...
We show that (*) is the best result provable in ZFC in case R has a countable spectrum: the Uniformization Principle UP^+ implies that C is not cogenerated by a set whenever C is a cotorsion pair generated ...
Introduction For any ring R, if S is a class of (right) Rmodules, we define A cotorsion pair (originally called a cotorsion theory) is a pair C = (F , C) such that F = ⊥ C and C = F ⊥ . ...
<span class="external-identifiers">
<a target="_blank" rel="external noopener" href="https://arxiv.org/abs/math/0405117v1">arXiv:math/0405117v1</a>
<a target="_blank" rel="external noopener" href="https://fatcat.wiki/release/b3pl4qgyhbh7bdfx2fscdaxu4a">fatcat:b3pl4qgyhbh7bdfx2fscdaxu4a</a>
</span>
<a target="_blank" rel="noopener" href="https://archive.org/download/arxiv-math0405117/math0405117.pdf" title="fulltext PDF download" data-goatcounter-click="serp-fulltext" data-goatcounter-title="serp-fulltext">
<button class="ui simple right pointing dropdown compact black labeled icon button serp-button">
<i class="icon ia-icon"></i>
File Archive
[PDF]
</button>
</a>
<a target="_blank" rel="external noopener" href="https://arxiv.org/abs/math/0405117v1" title="arxiv.org access">
<button class="ui compact blue labeled icon button serp-button">
<i class="file alternate outline icon"></i>
arxiv.org
</button>
</a>
The Kaplansky test problems for aleph_1-separable groups
[article]
<span title="1997-09-15">1997</span>
<i >
arXiv
</i>
<span class="release-stage" >pre-print</span>
Since ng ∈ G n−1 , ng = Σ i∈I e i,n−1 c i + c 0 for some c i , c 0 ∈ A. Then ng = Σ i∈I (ne i,n − a i )c i + c 0 = nΣ i∈I e i,n c i + a ′ for some a ′ ∈ A. ...
Suppose that Σ i∈I e i,n c i + 1 · c 0 = 0 for some c 0 , c i ∈ A. Then Σ i∈I ne i,n c i + nc 0 = 0, so Σ i∈I e i,n−1 c i + 1 · (Σ i∈I a i c i + nc 0 ) = 0. ...
<span class="external-identifiers">
<a target="_blank" rel="external noopener" href="https://arxiv.org/abs/math/9709230v1">arXiv:math/9709230v1</a>
<a target="_blank" rel="external noopener" href="https://fatcat.wiki/release/qp5kdbsw4vgmbb6jfq2dpuesbi">fatcat:qp5kdbsw4vgmbb6jfq2dpuesbi</a>
</span>
<a target="_blank" rel="noopener" href="https://archive.org/download/arxiv-math9709230/math9709230.pdf" title="fulltext PDF download" data-goatcounter-click="serp-fulltext" data-goatcounter-title="serp-fulltext">
<button class="ui simple right pointing dropdown compact black labeled icon button serp-button">
<i class="icon ia-icon"></i>
File Archive
[PDF]
</button>
</a>
<a target="_blank" rel="external noopener" href="https://arxiv.org/abs/math/9709230v1" title="arxiv.org access">
<button class="ui compact blue labeled icon button serp-button">
<i class="file alternate outline icon"></i>
arxiv.org
</button>
</a>
Covers Induced by Ext
<span title="">2000</span>
<i title="Elsevier BV">
<a target="_blank" rel="noopener" href="https://fatcat.wiki/container/h7qx4qsc2zf7hiupv27dke5fk4" style="color: black;">Journal of Algebra</a>
</i>
of C; (c) ⊥ C = ⊥ F, where F is the flat cover of C; moreover, F is pure- injective. ...
We define ⊥ = Ker Ext − = D Ext D C = 0 for all C ∈ and similarly ⊥ = Ker Ext − = D Ext C D = 0 for all C ∈ Ker Tor − = A Tor A B = 0 for all B ∈ For a module C, we will write ⊥ C instead of ⊥ C We start ...
<span class="external-identifiers">
<a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.1006/jabr.2000.8343">doi:10.1006/jabr.2000.8343</a>
<a target="_blank" rel="external noopener" href="https://fatcat.wiki/release/fhwa4ukdmvhh7bez4zs3ye33ie">fatcat:fhwa4ukdmvhh7bez4zs3ye33ie</a>
</span>
<a target="_blank" rel="noopener" href="https://web.archive.org/web/20171001111714/http://publisher-connector.core.ac.uk/resourcesync/data/elsevier/pdf/a23/aHR0cDovL2FwaS5lbHNldmllci5jb20vY29udGVudC9hcnRpY2xlL3BpaS9zMDAyMTg2OTMwMDk4MzQzMQ%3D%3D.pdf" title="fulltext PDF download" data-goatcounter-click="serp-fulltext" data-goatcounter-title="serp-fulltext">
<button class="ui simple right pointing dropdown compact black labeled icon button serp-button">
<i class="icon ia-icon"></i>
Web Archive
[PDF]
<div class="menu fulltext-thumbnail">
<img src="https://blobs.fatcat.wiki/thumbnail/pdf/52/e6/52e6699a8f3443f12fe29f17e4fef4c4ad2dd606.180px.jpg" alt="fulltext thumbnail" loading="lazy">
</div>
</button>
</a>
<a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.1006/jabr.2000.8343">
<button class="ui left aligned compact blue labeled icon button serp-button">
<i class="external alternate icon"></i>
Publisher / doi.org
</button>
</a>
« Previous
Showing results 1 — 15 out of 698 results