Filters








8,746 Hits in 5.2 sec

On the zero divisor graphs of pm-lattices

Vinayak Joshi, Anagha Khiste
<span title="">2012</span> <i title="Elsevier BV"> <a target="_blank" rel="noopener" href="https://fatcat.wiki/container/civgv5utqzhu7aj6voo6vc5vx4" style="color: black;">Discrete Mathematics</a> </i> &nbsp;
In this paper, we study the graph theoretic properties of the zero divisor graph Γ (L) of a pm-lattice L.  ...  We have characterized the diameter and the eccentricity of Γ (L) when L is a semiprimitive pm-lattice.  ...  The second author gratefully acknowledges the financial assistance in the form of CSIR Jr. Research Fellowship.  ... 
<span class="external-identifiers"> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.1016/j.disc.2012.03.027">doi:10.1016/j.disc.2012.03.027</a> <a target="_blank" rel="external noopener" href="https://fatcat.wiki/release/7ise433muvglbfejfctb42jemu">fatcat:7ise433muvglbfejfctb42jemu</a> </span>
<a target="_blank" rel="noopener" href="https://web.archive.org/web/20170924230729/http://publisher-connector.core.ac.uk/resourcesync/data/elsevier/pdf/1dc/aHR0cDovL2FwaS5lbHNldmllci5jb20vY29udGVudC9hcnRpY2xlL3BpaS9zMDAxMjM2NXgxMjAwMTQyMg%3D%3D.pdf" title="fulltext PDF download" data-goatcounter-click="serp-fulltext" data-goatcounter-title="serp-fulltext"> <button class="ui simple right pointing dropdown compact black labeled icon button serp-button"> <i class="icon ia-icon"></i> Web Archive [PDF] <div class="menu fulltext-thumbnail"> <img src="https://blobs.fatcat.wiki/thumbnail/pdf/07/a7/07a750d60c496337940292274b88b5410c9a00f3.180px.jpg" alt="fulltext thumbnail" loading="lazy"> </div> </button> </a> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.1016/j.disc.2012.03.027"> <button class="ui left aligned compact blue labeled icon button serp-button"> <i class="external alternate icon"></i> elsevier.com </button> </a>

Beck's Conjecture For Multiplicative Lattices [article]

Vinayak Joshi, Sachin Sarode
<span title="2013-10-17">2013</span> <i > arXiv </i> &nbsp; <span class="release-stage" >pre-print</span>
In this paper, we introduce the zero divisor graph of a multiplicative lattice. We provide a counter example to Beck's conjecture for multiplicative lattices.  ...  Further, we prove that Beck's conjecture is true for reduced multiplicative lattice which extends the result of Behboodi and Rakeei[7], and Aalipour et. al.[1].  ...  the zero divisor graph Γ(L) of the lattice L (in the lattice sense) is isomorphic to the zero divisor graph Γ m (L) of the reduced multiplicative lattice L.  ... 
<span class="external-identifiers"> <a target="_blank" rel="external noopener" href="https://arxiv.org/abs/1310.4594v1">arXiv:1310.4594v1</a> <a target="_blank" rel="external noopener" href="https://fatcat.wiki/release/jgj5l4fr7rdodlzcb6lz2pecvm">fatcat:jgj5l4fr7rdodlzcb6lz2pecvm</a> </span>
<a target="_blank" rel="noopener" href="https://web.archive.org/web/20191016192520/https://arxiv.org/pdf/1310.4594v1.pdf" title="fulltext PDF download" data-goatcounter-click="serp-fulltext" data-goatcounter-title="serp-fulltext"> <button class="ui simple right pointing dropdown compact black labeled icon button serp-button"> <i class="icon ia-icon"></i> Web Archive [PDF] <div class="menu fulltext-thumbnail"> <img src="https://blobs.fatcat.wiki/thumbnail/pdf/e2/01/e2014e0eb1dedabcff3fbd1de1d2837f8b6d34d9.180px.jpg" alt="fulltext thumbnail" loading="lazy"> </div> </button> </a> <a target="_blank" rel="external noopener" href="https://arxiv.org/abs/1310.4594v1" title="arxiv.org access"> <button class="ui compact blue labeled icon button serp-button"> <i class="file alternate outline icon"></i> arxiv.org </button> </a>

Distributive lattices with strong endomorphism kernel property as direct sums

Jaroslav Gurican
<span title="2021-01-01">2021</span> <i title="Armenian Green Publishing Co."> <a target="_blank" rel="noopener" href="https://fatcat.wiki/container/sw3e4424rjfl7nxgjftahlsiny" style="color: black;">Categories and General Algebraic Structures with Applications</a> </i> &nbsp;
aspects of the zero-divisor graph Γ(L).  ...  Among other things, we show that the Goldie dimension of L is equal to the cellularity of the topological space Spec(L) which is also equal to the clique number of the zero-divisor graph Γ(L).  ...  the zero-divisor graph Γ(R).  ... 
<span class="external-identifiers"> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.29252/cgasa.14.1.223">doi:10.29252/cgasa.14.1.223</a> <a target="_blank" rel="external noopener" href="https://fatcat.wiki/release/ezfewnznmjfqpgr552k3aap3ta">fatcat:ezfewnznmjfqpgr552k3aap3ta</a> </span>
<a target="_blank" rel="noopener" href="https://web.archive.org/web/20210209135624/http://cgasa.sbu.ac.ir/article_94188_8886cc33fcfa95bf3e8a98c714546517.pdf" title="fulltext PDF download" data-goatcounter-click="serp-fulltext" data-goatcounter-title="serp-fulltext"> <button class="ui simple right pointing dropdown compact black labeled icon button serp-button"> <i class="icon ia-icon"></i> Web Archive [PDF] <div class="menu fulltext-thumbnail"> <img src="https://blobs.fatcat.wiki/thumbnail/pdf/95/2b/952bfae0224271ece6a3ea6cc1bb814eb5748692.180px.jpg" alt="fulltext thumbnail" loading="lazy"> </div> </button> </a> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.29252/cgasa.14.1.223"> <button class="ui left aligned compact blue labeled icon button serp-button"> <i class="unlock alternate icon" style="background-color: #fb971f;"></i> Publisher / doi.org </button> </a>

Diameter and Girth of Zero Divisor Graph of Multiplicative Lattices [article]

Vinayak Joshi, Sachin Sarode
<span title="2013-10-17">2013</span> <i > arXiv </i> &nbsp; <span class="release-stage" >pre-print</span>
In this paper, we study the zero divisor graph Γ^m(L) of a multiplicative lattice L.  ...  Further, we have characterized the diameter of Γ^m(L).  ...  zero-divisor graph Γ(L) is a bipartite graph. (4) The zero-divisor graph Γ m (L) is a complete bipartite graph  ... 
<span class="external-identifiers"> <a target="_blank" rel="external noopener" href="https://arxiv.org/abs/1310.4653v1">arXiv:1310.4653v1</a> <a target="_blank" rel="external noopener" href="https://fatcat.wiki/release/gqp22dheezduvfcol4pafvkvg4">fatcat:gqp22dheezduvfcol4pafvkvg4</a> </span>
<a target="_blank" rel="noopener" href="https://web.archive.org/web/20200915101217/https://arxiv.org/pdf/1310.4653v1.pdf" title="fulltext PDF download" data-goatcounter-click="serp-fulltext" data-goatcounter-title="serp-fulltext"> <button class="ui simple right pointing dropdown compact black labeled icon button serp-button"> <i class="icon ia-icon"></i> Web Archive [PDF] <div class="menu fulltext-thumbnail"> <img src="https://blobs.fatcat.wiki/thumbnail/pdf/ab/ac/abac6bc4d31dec8347cd50f233df68c93be16824.180px.jpg" alt="fulltext thumbnail" loading="lazy"> </div> </button> </a> <a target="_blank" rel="external noopener" href="https://arxiv.org/abs/1310.4653v1" title="arxiv.org access"> <button class="ui compact blue labeled icon button serp-button"> <i class="file alternate outline icon"></i> arxiv.org </button> </a>

A note on the zero divisor graph of a lattice

T. Tamizh Chelvam, S. Nithya
<span title="">2014</span> <i title="University of Isfahan"> <a target="_blank" rel="noopener" href="https://fatcat.wiki/container/f7easkyagfen5hjip5xegq5vma" style="color: black;">Transactions on Combinatorics</a> </i> &nbsp;
In this paper, we obtain certain properties and diameter and girth of the zero divisor graph $Gamma(L)$. Also we find a dominating set and the domination number of the zero divisor graph $Gamma(L)$  ...  Let $L$ be a lattice with the least element $0$. An element $xin L$ is a zero divisor if $xwedge y=0$ for some $yin L^*=Lsetminus left{0right}$. The set of all zero divisors is denoted by $Z(L)$.  ...  Acknowledgment The authors express their sincere thanks to the referees for many valuable comments, which improved the exposition a lot.  ... 
<span class="external-identifiers"> <a target="_blank" rel="external noopener" href="https://doaj.org/article/56af04977b4f4b699332e8810519e8a0">doaj:56af04977b4f4b699332e8810519e8a0</a> <a target="_blank" rel="external noopener" href="https://fatcat.wiki/release/ni4ckf7zandjxo6u6rmw7jnxsi">fatcat:ni4ckf7zandjxo6u6rmw7jnxsi</a> </span>
<a target="_blank" rel="noopener" href="https://web.archive.org/web/20171202215317/http://toc.ui.ac.ir/pdf_5626_80f88a878c7d9f2b5f4422c943a90ae7.html" title="fulltext PDF download" data-goatcounter-click="serp-fulltext" data-goatcounter-title="serp-fulltext"> <button class="ui simple right pointing dropdown compact black labeled icon button serp-button"> <i class="icon ia-icon"></i> Web Archive [PDF] <div class="menu fulltext-thumbnail"> <img src="https://blobs.fatcat.wiki/thumbnail/pdf/f0/0a/f00a3f8c95c5b133e805ab647bf9da2cada4a578.180px.jpg" alt="fulltext thumbnail" loading="lazy"> </div> </button> </a>

Coloring of zero-divisor graphs of posets and applications to graphs associated with algebraic structures [article]

Nilesh Khandekar, Vinayak Joshi
<span title="2022-05-10">2022</span> <i > arXiv </i> &nbsp; <span class="release-stage" >pre-print</span>
Also, it is proved that the zero-divisor graphs of finite posets and the complement of zero-divisor graphs of finite 0-distributive posets satisfy the Total Coloring Conjecture.  ...  These results are applied to the zero-divisor graphs of finite reduced rings, the comaximal ideal graph of rings, the annihilating ideal graphs, the intersection graphs of ideals of rings, and the intersection  ...  Authorship Contributions: Both the authors contributed equally in the study of zero-divisor graphs of ordered sets and their applications to algebraic structures.  ... 
<span class="external-identifiers"> <a target="_blank" rel="external noopener" href="https://arxiv.org/abs/2205.04916v1">arXiv:2205.04916v1</a> <a target="_blank" rel="external noopener" href="https://fatcat.wiki/release/caod7nitwnbvlcmqrfvw3yj4hi">fatcat:caod7nitwnbvlcmqrfvw3yj4hi</a> </span>
<a target="_blank" rel="noopener" href="https://web.archive.org/web/20220512045506/https://arxiv.org/pdf/2205.04916v1.pdf" title="fulltext PDF download" data-goatcounter-click="serp-fulltext" data-goatcounter-title="serp-fulltext"> <button class="ui simple right pointing dropdown compact black labeled icon button serp-button"> <i class="icon ia-icon"></i> Web Archive [PDF] <div class="menu fulltext-thumbnail"> <img src="https://blobs.fatcat.wiki/thumbnail/pdf/13/fd/13fd7544ccb16c458c173bce0acf9f954c234586.180px.jpg" alt="fulltext thumbnail" loading="lazy"> </div> </button> </a> <a target="_blank" rel="external noopener" href="https://arxiv.org/abs/2205.04916v1" title="arxiv.org access"> <button class="ui compact blue labeled icon button serp-button"> <i class="file alternate outline icon"></i> arxiv.org </button> </a>

Zero-divisor graphs of lower dismantlable lattices-I [article]

Avinash Patil, B. N. Waphare, Vinayak Joshi, H. Y. Pourali
<span title="2015-09-08">2015</span> <i > arXiv </i> &nbsp; <span class="release-stage" >pre-print</span>
In this paper, we study the zero-divisor graphs of a subclass of dismantlable lattices. These graphs are characterized in terms of the non-ancestor graphs of rooted trees.  ...  Acknowledgements: The authors are grateful to the referee for fruitful suggestions.  ...  The first author is financially supported by University Grant Commission, New Delhi via minor research project File No. 47-884/14(WRO).  ... 
<span class="external-identifiers"> <a target="_blank" rel="external noopener" href="https://arxiv.org/abs/1509.02489v1">arXiv:1509.02489v1</a> <a target="_blank" rel="external noopener" href="https://fatcat.wiki/release/lpenzyyn4rfazbm7yusq73m3gq">fatcat:lpenzyyn4rfazbm7yusq73m3gq</a> </span>
<a target="_blank" rel="noopener" href="https://web.archive.org/web/20200826124211/https://arxiv.org/pdf/1509.02489v1.pdf" title="fulltext PDF download" data-goatcounter-click="serp-fulltext" data-goatcounter-title="serp-fulltext"> <button class="ui simple right pointing dropdown compact black labeled icon button serp-button"> <i class="icon ia-icon"></i> Web Archive [PDF] <div class="menu fulltext-thumbnail"> <img src="https://blobs.fatcat.wiki/thumbnail/pdf/f7/c7/f7c7f27a8abf95bf0688d5695d7a4aa3b928a573.180px.jpg" alt="fulltext thumbnail" loading="lazy"> </div> </button> </a> <a target="_blank" rel="external noopener" href="https://arxiv.org/abs/1509.02489v1" title="arxiv.org access"> <button class="ui compact blue labeled icon button serp-button"> <i class="file alternate outline icon"></i> arxiv.org </button> </a>

A tropical proof of the Brill–Noether Theorem

Filip Cools, Jan Draisma, Sam Payne, Elina Robeva
<span title="">2012</span> <i title="Elsevier BV"> <a target="_blank" rel="noopener" href="https://fatcat.wiki/container/37jjomjmvfhrzf3di2gjnrrfuu" style="color: black;">Advances in Mathematics</a> </i> &nbsp;
We produce Brill-Noether general graphs in every genus, confirming a conjecture of Baker and giving a new proof of the Brill-Noether Theorem, due to Griffiths and Harris, over any algebraically closed  ...  Zharkov, for many enlightening discussions, and M. Baker, F. Schroeter, and the referee for helpful comments on an earlier draft.  ...  The work of S.P. was partially supported by the Clay Mathematics Institute and NSF grant DMS 1068689. The work of E.R. was supported by a research grant from VPUE of Stanford University.  ... 
<span class="external-identifiers"> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.1016/j.aim.2012.02.019">doi:10.1016/j.aim.2012.02.019</a> <a target="_blank" rel="external noopener" href="https://fatcat.wiki/release/yp5y4oocmrhjbi5zmye6xrbzhm">fatcat:yp5y4oocmrhjbi5zmye6xrbzhm</a> </span>
<a target="_blank" rel="noopener" href="https://web.archive.org/web/20190327061428/https://core.ac.uk/download/pdf/82168570.pdf" title="fulltext PDF download" data-goatcounter-click="serp-fulltext" data-goatcounter-title="serp-fulltext"> <button class="ui simple right pointing dropdown compact black labeled icon button serp-button"> <i class="icon ia-icon"></i> Web Archive [PDF] <div class="menu fulltext-thumbnail"> <img src="https://blobs.fatcat.wiki/thumbnail/pdf/7f/6c/7f6cc74401d29d1c6dc631eb21b9d3c703b35993.180px.jpg" alt="fulltext thumbnail" loading="lazy"> </div> </button> </a> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.1016/j.aim.2012.02.019"> <button class="ui left aligned compact blue labeled icon button serp-button"> <i class="external alternate icon"></i> elsevier.com </button> </a>

A tropical proof of the Brill-Noether Theorem [article]

Filip Cools, Jan Draisma, Sam Payne, Elina Robeva
<span title="2012-03-29">2012</span> <i > arXiv </i> &nbsp; <span class="release-stage" >pre-print</span>
We produce Brill-Noether general graphs in every genus, confirming a conjecture of Baker and giving a new proof of the Brill-Noether Theorem, due to Griffiths and Harris, over any algebraically closed  ...  Preliminaries We briefly recall the theory of divisor classes and ranks of divisors on (metric) graphs, following Baker and Norine [BN07, Bak08] , to which we refer the reader for further details, references  ...  Zharkov, for many enlightening discussions, and M. Baker for helpful comments on an earlier draft. The work of FC is supported by a postdoctoral fellowship from the Research Foundation -Flanders.  ... 
<span class="external-identifiers"> <a target="_blank" rel="external noopener" href="https://arxiv.org/abs/1001.2774v3">arXiv:1001.2774v3</a> <a target="_blank" rel="external noopener" href="https://fatcat.wiki/release/oix24tk4bfgivbxw6rexyunnlm">fatcat:oix24tk4bfgivbxw6rexyunnlm</a> </span>
<a target="_blank" rel="noopener" href="https://web.archive.org/web/20171003224522/https://core.ac.uk/download/pdf/2101375.pdf" title="fulltext PDF download" data-goatcounter-click="serp-fulltext" data-goatcounter-title="serp-fulltext"> <button class="ui simple right pointing dropdown compact black labeled icon button serp-button"> <i class="icon ia-icon"></i> Web Archive [PDF] <div class="menu fulltext-thumbnail"> <img src="https://blobs.fatcat.wiki/thumbnail/pdf/21/e1/21e16abea6e3aadf45a424db69d35c9a8f3897eb.180px.jpg" alt="fulltext thumbnail" loading="lazy"> </div> </button> </a> <a target="_blank" rel="external noopener" href="https://arxiv.org/abs/1001.2774v3" title="arxiv.org access"> <button class="ui compact blue labeled icon button serp-button"> <i class="file alternate outline icon"></i> arxiv.org </button> </a>

Zero-Divisor Graphs of Catalan Monoid

Kemal TOKER
<span title="2020-12-31">2020</span> <i title="Hacettepe University"> <a target="_blank" rel="noopener" href="https://fatcat.wiki/container/qm6dfudbondbrg66ebdzqhx5da" style="color: black;">Hacettepe Journal of Mathematics and Statistics</a> </i> &nbsp;
In this paper, we describe the sets of left zero-divisors, right zero-divisors and two sided zero-divisors of C n ; and their numbers.  ...  For n ≥ 4, we define an undirected graph Γ(C n ) associated with C n whose vertices are the two sided zero-divisors of C n excluding the zero element θ of C n with distinct two vertices α and β joined  ...  Introduction The zero-divisor graph was introduced by Beck on commutative rings in [3] .  ... 
<span class="external-identifiers"> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.15672/hujms.702478">doi:10.15672/hujms.702478</a> <a target="_blank" rel="external noopener" href="https://fatcat.wiki/release/3zduq5kcbnesjpdpci6rf66rpq">fatcat:3zduq5kcbnesjpdpci6rf66rpq</a> </span>
<a target="_blank" rel="noopener" href="https://web.archive.org/web/20210604040928/https://dergipark.org.tr/en/download/article-file/1002929" title="fulltext PDF download" data-goatcounter-click="serp-fulltext" data-goatcounter-title="serp-fulltext"> <button class="ui simple right pointing dropdown compact black labeled icon button serp-button"> <i class="icon ia-icon"></i> Web Archive [PDF] <div class="menu fulltext-thumbnail"> <img src="https://blobs.fatcat.wiki/thumbnail/pdf/57/52/5752ee17506429255f2295695cf70c161233965c.180px.jpg" alt="fulltext thumbnail" loading="lazy"> </div> </button> </a> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.15672/hujms.702478"> <button class="ui left aligned compact blue labeled icon button serp-button"> <i class="external alternate icon"></i> Publisher / doi.org </button> </a>

Poincaré Series of Divisors on Graphs and Chains of Loops [article]

Madhusudan Manjunath
<span title="2022-03-25">2022</span> <i > arXiv </i> &nbsp; <span class="release-stage" >pre-print</span>
We study Poincar\'e series associated to a finite collection of divisors on i. a finite graph and ii. a certain family of metric graphs called chain of loops.  ...  For chains of loops, our main tool is an analogue of Lang's conjecture for Brill-Noether loci on a chain of loops and adapts the proof of rationality of the Poincar\'e series of divisors on an algebraic  ...  Note that since the degree of every divisor is zero and every divisor of degree zero that is not principal has rank minus one, P G (z 1 , . . . , z N −1 ) = P [O] G (z 1 , . . . , z N −1 ) where [O] is  ... 
<span class="external-identifiers"> <a target="_blank" rel="external noopener" href="https://arxiv.org/abs/2011.11910v2">arXiv:2011.11910v2</a> <a target="_blank" rel="external noopener" href="https://fatcat.wiki/release/bks4pl6gp5b7dcfh3jjfiseqiy">fatcat:bks4pl6gp5b7dcfh3jjfiseqiy</a> </span>
<a target="_blank" rel="noopener" href="https://web.archive.org/web/20220530055845/https://arxiv.org/pdf/2011.11910v2.pdf" title="fulltext PDF download" data-goatcounter-click="serp-fulltext" data-goatcounter-title="serp-fulltext"> <button class="ui simple right pointing dropdown compact black labeled icon button serp-button"> <i class="icon ia-icon"></i> Web Archive [PDF] <div class="menu fulltext-thumbnail"> <img src="https://blobs.fatcat.wiki/thumbnail/pdf/fc/a3/fca39464246d6e8d62b371e91912fc6e32f31c02.180px.jpg" alt="fulltext thumbnail" loading="lazy"> </div> </button> </a> <a target="_blank" rel="external noopener" href="https://arxiv.org/abs/2011.11910v2" title="arxiv.org access"> <button class="ui compact blue labeled icon button serp-button"> <i class="file alternate outline icon"></i> arxiv.org </button> </a>

The rank of a divisor on a finite graph: geometry and computation [article]

Madhusudan Manjunath
<span title="2011-11-30">2011</span> <i > arXiv </i> &nbsp; <span class="release-stage" >pre-print</span>
We study the problem of computing the rank of a divisor on a finite graph, a quantity that arises in the Riemann-Roch theory on a finite graph developed by Baker and Norine (Advances of Mathematics, 215  ...  , we construct a new graph invariant that we call the critical automorphism group of the graph.  ...  Acknowledgements: The author thanks Omid Amini, Khaled Elbasionni, Jan van den Heuvel and Amr Elmasary for the stimulating discussions they had with him on the topic of the paper.  ... 
<span class="external-identifiers"> <a target="_blank" rel="external noopener" href="https://arxiv.org/abs/1111.7251v1">arXiv:1111.7251v1</a> <a target="_blank" rel="external noopener" href="https://fatcat.wiki/release/4yaid7p7jnhgpbfevgtuvrzkiq">fatcat:4yaid7p7jnhgpbfevgtuvrzkiq</a> </span>
<a target="_blank" rel="noopener" href="https://archive.org/download/arxiv-1111.7251/1111.7251.pdf" title="fulltext PDF download" data-goatcounter-click="serp-fulltext" data-goatcounter-title="serp-fulltext"> <button class="ui simple right pointing dropdown compact black labeled icon button serp-button"> <i class="icon ia-icon"></i> File Archive [PDF] </button> </a> <a target="_blank" rel="external noopener" href="https://arxiv.org/abs/1111.7251v1" title="arxiv.org access"> <button class="ui compact blue labeled icon button serp-button"> <i class="file alternate outline icon"></i> arxiv.org </button> </a>

Zero-divisor graphs of nilpotent-free semigroups

Neil Epstein, Peyman Nasehpour
<span title="2012-06-06">2012</span> <i title="Springer Nature"> <a target="_blank" rel="noopener" href="https://fatcat.wiki/container/cvausbtygzb5fdr6mvjzyvlh6e" style="color: black;">Journal of Algebraic Combinatorics</a> </i> &nbsp;
We use it to give relationships between the zero-divisor graph of a ring, a polynomial ring, and the annihilating-ideal graph.  ...  We find strong relationships between the zero-divisor graphs of apparently disparate kinds of nilpotent-free semigroups by introducing the notion of an Armendariz map between such semigroups, which preserves  ...  by graph-theoretic invariants of the corresponding zero-divisor graphs.  ... 
<span class="external-identifiers"> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.1007/s10801-012-0377-x">doi:10.1007/s10801-012-0377-x</a> <a target="_blank" rel="external noopener" href="https://fatcat.wiki/release/xgv7xkaa5nb6pc3gzkeww4iuoe">fatcat:xgv7xkaa5nb6pc3gzkeww4iuoe</a> </span>
<a target="_blank" rel="noopener" href="https://web.archive.org/web/20190502213910/https://link.springer.com/content/pdf/10.1007%2Fs10801-012-0377-x.pdf" title="fulltext PDF download" data-goatcounter-click="serp-fulltext" data-goatcounter-title="serp-fulltext"> <button class="ui simple right pointing dropdown compact black labeled icon button serp-button"> <i class="icon ia-icon"></i> Web Archive [PDF] <div class="menu fulltext-thumbnail"> <img src="https://blobs.fatcat.wiki/thumbnail/pdf/da/8a/da8aa3a301ae6d2d0cb6d149c40fea9cef0a1563.180px.jpg" alt="fulltext thumbnail" loading="lazy"> </div> </button> </a> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.1007/s10801-012-0377-x"> <button class="ui left aligned compact blue labeled icon button serp-button"> <i class="external alternate icon"></i> springer.com </button> </a>

Elementary Divisors of Graphs and Matroids

A. Vince
<span title="">1991</span> <i title="Elsevier BV"> <a target="_blank" rel="noopener" href="https://fatcat.wiki/container/54t3hgai4fhhthc74mj7z7tapu" style="color: black;">European journal of combinatorics (Print)</a> </i> &nbsp;
Several properties of the elementary divisors of graphs are proved and the problem of how well these invariants distinguish between graphs is addressed.  ...  New integer invariants of a graph G, introduced by U. Oberst, are obtained as the elementary divisors of the Laplacian matrix of G.  ...  So the elementary divisors of M[A] are the elementary divisors of BB T • Any two bases A and B of A are related by A = PB where P is a unimodular matrix. Then AB T = (PB)B T = P(BB T ) .  ... 
<span class="external-identifiers"> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.1016/s0195-6698(13)80020-0">doi:10.1016/s0195-6698(13)80020-0</a> <a target="_blank" rel="external noopener" href="https://fatcat.wiki/release/iqsvg33owvfjdfvygnjukvn7s4">fatcat:iqsvg33owvfjdfvygnjukvn7s4</a> </span>
<a target="_blank" rel="noopener" href="https://web.archive.org/web/20170928053725/http://publisher-connector.core.ac.uk/resourcesync/data/elsevier/pdf/5fc/aHR0cDovL2FwaS5lbHNldmllci5jb20vY29udGVudC9hcnRpY2xlL3BpaS9zMDE5NTY2OTgxMzgwMDIwMA%3D%3D.pdf" title="fulltext PDF download" data-goatcounter-click="serp-fulltext" data-goatcounter-title="serp-fulltext"> <button class="ui simple right pointing dropdown compact black labeled icon button serp-button"> <i class="icon ia-icon"></i> Web Archive [PDF] <div class="menu fulltext-thumbnail"> <img src="https://blobs.fatcat.wiki/thumbnail/pdf/20/0e/200e5afb60d726f4efff35e5d21d8a80f5dd1041.180px.jpg" alt="fulltext thumbnail" loading="lazy"> </div> </button> </a> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.1016/s0195-6698(13)80020-0"> <button class="ui left aligned compact blue labeled icon button serp-button"> <i class="external alternate icon"></i> elsevier.com </button> </a>

Fujita's Freeness Conjecture for T-Varieties of Complexity One [article]

Klaus Altmann, Nathan Ilten
<span title="2017-12-28">2017</span> <i > arXiv </i> &nbsp; <span class="release-stage" >pre-print</span>
We prove Fujita's freeness conjecture for Gorenstein complexity-one T-varieties with rational singularities.  ...  For any u ∈ ✷ ∩ M, there is a bijection between lattice points ofP (Ψ) u and degree zero divisors F with support contained in P satisfying F + Ψ(u) ≥ 0.  ...  In particular, ✷ h is a lattice polytope, and the vertices of the graph of h * P are all integral.  ... 
<span class="external-identifiers"> <a target="_blank" rel="external noopener" href="https://arxiv.org/abs/1712.09927v1">arXiv:1712.09927v1</a> <a target="_blank" rel="external noopener" href="https://fatcat.wiki/release/pymjyacft5dydk7gj4zyccm4hm">fatcat:pymjyacft5dydk7gj4zyccm4hm</a> </span>
<a target="_blank" rel="noopener" href="https://web.archive.org/web/20200929084333/https://arxiv.org/pdf/1712.09927v1.pdf" title="fulltext PDF download" data-goatcounter-click="serp-fulltext" data-goatcounter-title="serp-fulltext"> <button class="ui simple right pointing dropdown compact black labeled icon button serp-button"> <i class="icon ia-icon"></i> Web Archive [PDF] <div class="menu fulltext-thumbnail"> <img src="https://blobs.fatcat.wiki/thumbnail/pdf/e8/aa/e8aa6b91ceaa08ff965d775c57d030d460076607.180px.jpg" alt="fulltext thumbnail" loading="lazy"> </div> </button> </a> <a target="_blank" rel="external noopener" href="https://arxiv.org/abs/1712.09927v1" title="arxiv.org access"> <button class="ui compact blue labeled icon button serp-button"> <i class="file alternate outline icon"></i> arxiv.org </button> </a>
&laquo; Previous Showing results 1 &mdash; 15 out of 8,746 results