Filters








122,516 Hits in 2.8 sec

On cycle double covers of line graphs

Leizhen Cai, Derek Corneil
<span title="">1992</span> <i title="Elsevier BV"> <a target="_blank" rel="noopener" href="https://fatcat.wiki/container/civgv5utqzhu7aj6voo6vc5vx4" style="color: black;">Discrete Mathematics</a> </i> &nbsp;
Corneil, On cycle double covers of line graphs, Discrete Mathematics 102 (1992) 103-106. It is shown that if a graph has a cycle double cover, then its line graph also has a cycle double cover.  ...  The converse of this result for 2-edge-connected graphs would imply the truth of the cycle double cover conjecture.  ...  Acknowledgements The authors wish to thank the referees for several useful suggestions and the National Sciences and Engineering Research Council of Canada for financial assistance.  ... 
<span class="external-identifiers"> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.1016/0012-365x(92)90355-j">doi:10.1016/0012-365x(92)90355-j</a> <a target="_blank" rel="external noopener" href="https://fatcat.wiki/release/i5ctk7rzkfgsvnf777nu7gwfti">fatcat:i5ctk7rzkfgsvnf777nu7gwfti</a> </span>
<a target="_blank" rel="noopener" href="https://web.archive.org/web/20170927050103/http://publisher-connector.core.ac.uk/resourcesync/data/elsevier/pdf/4c0/aHR0cDovL2FwaS5lbHNldmllci5jb20vY29udGVudC9hcnRpY2xlL3BpaS8wMDEyMzY1eDkyOTAzNTVq.pdf" title="fulltext PDF download" data-goatcounter-click="serp-fulltext" data-goatcounter-title="serp-fulltext"> <button class="ui simple right pointing dropdown compact black labeled icon button serp-button"> <i class="icon ia-icon"></i> Web Archive [PDF] <div class="menu fulltext-thumbnail"> <img src="https://blobs.fatcat.wiki/thumbnail/pdf/53/b5/53b5d5e452f7108ab55bc5d719fa1255966cc386.180px.jpg" alt="fulltext thumbnail" loading="lazy"> </div> </button> </a> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.1016/0012-365x(92)90355-j"> <button class="ui left aligned compact blue labeled icon button serp-button"> <i class="external alternate icon"></i> elsevier.com </button> </a>

Even cycle decompositions of 4-regular graphs and line graphs

Klas Markström
<span title="">2012</span> <i title="Elsevier BV"> <a target="_blank" rel="noopener" href="https://fatcat.wiki/container/civgv5utqzhu7aj6voo6vc5vx4" style="color: black;">Discrete Mathematics</a> </i> &nbsp;
Motivated by connections to the cycle double cover conjecture we go on to consider even cycle decompositions of line graphs of 2-connected cubic graphs.  ...  We conjecture that in this class even cycle decompositions always exists and prove the conjecture for cubic graphs with oddness at most 2. We also discuss even cycle double covers of cubic graphs.  ...  Even cycle double covers Recall that a cycle double cover of a graph G is a family of cycles from G such that every edge of G belongs to exactly two of the cycles.  ... 
<span class="external-identifiers"> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.1016/j.disc.2011.12.007">doi:10.1016/j.disc.2011.12.007</a> <a target="_blank" rel="external noopener" href="https://fatcat.wiki/release/rxgjlrpaafaxplmbsfbp5cqeoa">fatcat:rxgjlrpaafaxplmbsfbp5cqeoa</a> </span>
<a target="_blank" rel="noopener" href="https://web.archive.org/web/20171002225042/http://publisher-connector.core.ac.uk/resourcesync/data/elsevier/pdf/bfa/aHR0cDovL2FwaS5lbHNldmllci5jb20vY29udGVudC9hcnRpY2xlL3BpaS9zMDAxMjM2NXgxMTAwNTY3eA%3D%3D.pdf" title="fulltext PDF download" data-goatcounter-click="serp-fulltext" data-goatcounter-title="serp-fulltext"> <button class="ui simple right pointing dropdown compact black labeled icon button serp-button"> <i class="icon ia-icon"></i> Web Archive [PDF] <div class="menu fulltext-thumbnail"> <img src="https://blobs.fatcat.wiki/thumbnail/pdf/b4/c9/b4c9c1dc5965d760c5c6509d0c21a479dfd7d566.180px.jpg" alt="fulltext thumbnail" loading="lazy"> </div> </button> </a> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.1016/j.disc.2011.12.007"> <button class="ui left aligned compact blue labeled icon button serp-button"> <i class="external alternate icon"></i> elsevier.com </button> </a>

Antipodal covers of strongly regular graphs

Aleksandar Jurišić
<span title="">1998</span> <i title="Elsevier BV"> <a target="_blank" rel="noopener" href="https://fatcat.wiki/container/civgv5utqzhu7aj6voo6vc5vx4" style="color: black;">Discrete Mathematics</a> </i> &nbsp;
Antipodal covers of strongly regular graphs which are not necessarily distance-regular are studied. The structure of short cycles in an antipodal cover is considered.  ...  In these cases, covers cannot be distance-regular except when they cover a complete bipartite graph. A relationship between antipodal covers of a graph and its line graph is investigated.  ...  It is not hard to see that a non-distance-regular graph /£2 × C6 is the only antipodal double-cover of K3,3. (Its line graph is the only antipodal double-cover of/£3 × K3.)  ... 
<span class="external-identifiers"> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.1016/s0012-365x(97)00139-8">doi:10.1016/s0012-365x(97)00139-8</a> <a target="_blank" rel="external noopener" href="https://fatcat.wiki/release/shuni5ozqffhroi3psagupjgyy">fatcat:shuni5ozqffhroi3psagupjgyy</a> </span>
<a target="_blank" rel="noopener" href="https://web.archive.org/web/20171002154101/http://publisher-connector.core.ac.uk/resourcesync/data/elsevier/pdf/b9d/aHR0cDovL2FwaS5lbHNldmllci5jb20vY29udGVudC9hcnRpY2xlL3BpaS9zMDAxMjM2NXg5NzAwMTM5OA%3D%3D.pdf" title="fulltext PDF download" data-goatcounter-click="serp-fulltext" data-goatcounter-title="serp-fulltext"> <button class="ui simple right pointing dropdown compact black labeled icon button serp-button"> <i class="icon ia-icon"></i> Web Archive [PDF] <div class="menu fulltext-thumbnail"> <img src="https://blobs.fatcat.wiki/thumbnail/pdf/4f/5c/4f5cebd3aea112e105a6da98ec7da58a35914763.180px.jpg" alt="fulltext thumbnail" loading="lazy"> </div> </button> </a> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.1016/s0012-365x(97)00139-8"> <button class="ui left aligned compact blue labeled icon button serp-button"> <i class="external alternate icon"></i> elsevier.com </button> </a>

Page 48 of Mathematical Reviews Vol. , Issue 94a [page]

<span title="">1994</span> <i title="American Mathematical Society"> <a target="_blank" rel="noopener" href="https://archive.org/details/pub_mathematical-reviews" style="color: black;">Mathematical Reviews </a> </i> &nbsp;
The cycle double cover conjecture asserts that in every bridgeless graph one can find a cycle cover such that every edge appears in exactly two cycles of the cover.  ...  Then a cycle cover of length at most 2|E(G’)| of the resulting graph G’ yields a cycle double cover of G.  ... 
<span class="external-identifiers"> </span>
<a target="_blank" rel="noopener" href="https://archive.org/details/sim_mathematical-reviews_1994-01_94a/page/48" title="read fulltext microfilm" data-goatcounter-click="serp-fulltext" data-goatcounter-title="serp-fulltext"> <button class="ui simple right pointing dropdown compact black labeled icon button serp-button"> <i class="icon ia-icon"></i> Archive [Microfilm] <div class="menu fulltext-thumbnail"> <img src="https://archive.org/serve/sim_mathematical-reviews_1994-01_94a/__ia_thumb.jpg" alt="fulltext thumbnail" loading="lazy"> </div> </button> </a>

Hurwitz numbers, ribbon graphs, and tropicalization [article]

Paul Johnson
<span title="2013-03-06">2013</span> <i > arXiv </i> &nbsp; <span class="release-stage" >pre-print</span>
More recently, double Hurwitz numbers have been expressed as a count of certain ribbon graphs, or as a weighted count of certain labeled graphs.  ...  Double Hurwitz numbers have at least four equivalent definitions. Most naturally, they count covers of the Riemann sphere by genus g curves with certain specified ramification data.  ...  Definition of double Hurwitz numbers in terms of covers. Definition 2.1 (Covers).  ... 
<span class="external-identifiers"> <a target="_blank" rel="external noopener" href="https://arxiv.org/abs/1303.1543v1">arXiv:1303.1543v1</a> <a target="_blank" rel="external noopener" href="https://fatcat.wiki/release/wkpzceas35doho67nq4rjlox5u">fatcat:wkpzceas35doho67nq4rjlox5u</a> </span>
<a target="_blank" rel="noopener" href="https://archive.org/download/arxiv-1303.1543/1303.1543.pdf" title="fulltext PDF download" data-goatcounter-click="serp-fulltext" data-goatcounter-title="serp-fulltext"> <button class="ui simple right pointing dropdown compact black labeled icon button serp-button"> <i class="icon ia-icon"></i> File Archive [PDF] </button> </a> <a target="_blank" rel="external noopener" href="https://arxiv.org/abs/1303.1543v1" title="arxiv.org access"> <button class="ui compact blue labeled icon button serp-button"> <i class="file alternate outline icon"></i> arxiv.org </button> </a>

Minimum rank of outerplanar graphs

John Sinkovic, Mark Kempton
<span title="">2012</span> <i title="Elsevier BV"> <a target="_blank" rel="noopener" href="https://fatcat.wiki/container/wsx3rzhpingfvewcn5nwhfkq3e" style="color: black;">Linear Algebra and its Applications</a> </i> &nbsp;
We generalize the idea of the clique cover number by defining the rank sum of a cover to be the sum of the minimum ranks of the graphs in the cover.  ...  It is well known that the minimum rank of any graph is bounded above by the clique cover number, the minimum number of cliques needed to cover all edges of the graph.  ...  Define C to be the cover of G consisting of the graphs of C except for the double cycle, the other cycle D of this double cycle, and the k − 2 edges of C not covered by the other graphs.  ... 
<span class="external-identifiers"> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.1016/j.laa.2012.01.008">doi:10.1016/j.laa.2012.01.008</a> <a target="_blank" rel="external noopener" href="https://fatcat.wiki/release/6d5ebylu7zcmdjousddiljgoy4">fatcat:6d5ebylu7zcmdjousddiljgoy4</a> </span>
<a target="_blank" rel="noopener" href="https://web.archive.org/web/20170924181542/http://publisher-connector.core.ac.uk/resourcesync/data/elsevier/pdf/19b/aHR0cDovL2FwaS5lbHNldmllci5jb20vY29udGVudC9hcnRpY2xlL3BpaS9zMDAyNDM3OTUxMjAwMDU2MA%3D%3D.pdf" title="fulltext PDF download" data-goatcounter-click="serp-fulltext" data-goatcounter-title="serp-fulltext"> <button class="ui simple right pointing dropdown compact black labeled icon button serp-button"> <i class="icon ia-icon"></i> Web Archive [PDF] <div class="menu fulltext-thumbnail"> <img src="https://blobs.fatcat.wiki/thumbnail/pdf/11/3d/113da3eaad0045e3c93cbf843003db8d2113ed46.180px.jpg" alt="fulltext thumbnail" loading="lazy"> </div> </button> </a> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.1016/j.laa.2012.01.008"> <button class="ui left aligned compact blue labeled icon button serp-button"> <i class="external alternate icon"></i> elsevier.com </button> </a>

Page 604 of Mathematical Reviews Vol. , Issue 93b [page]

<span title="">1993</span> <i title="American Mathematical Society"> <a target="_blank" rel="noopener" href="https://archive.org/details/pub_mathematical-reviews" style="color: black;">Mathematical Reviews </a> </i> &nbsp;
Summary: “It is shown that if a graph has a cycle double cover, then its line graph also has a cycle double cover.  ...  Ke Min Zhang (PRC-NAN) 93b:05129 05C70 05C38 Cai, Leizhen (3-TRNT-C); Corneil, Derek (3-TRNT-C) On cycle double covers of line graphs. Discrete Math. 102 (1992), no. 1, 103-106.  ... 
<span class="external-identifiers"> </span>
<a target="_blank" rel="noopener" href="https://archive.org/details/sim_mathematical-reviews_1993-02_93b/page/604" title="read fulltext microfilm" data-goatcounter-click="serp-fulltext" data-goatcounter-title="serp-fulltext"> <button class="ui simple right pointing dropdown compact black labeled icon button serp-button"> <i class="icon ia-icon"></i> Archive [Microfilm] <div class="menu fulltext-thumbnail"> <img src="https://archive.org/serve/sim_mathematical-reviews_1993-02_93b/__ia_thumb.jpg" alt="fulltext thumbnail" loading="lazy"> </div> </button> </a>

A proof of the Cycle Double Cover Conjecture [article]

Mary Radcliffe
<span title="2015-10-09">2015</span> <i > arXiv </i> &nbsp; <span class="release-stage" >pre-print</span>
We here present a proof that every bridgeless cubic graph has a cycle double cover by analyzing certain kinds of cycles in the line graph of G.  ...  Given a bridgeless graph G, the Cycle Double Cover Conjecture posits that there is a list of cycles of G, such that every edge appears in exactly two cycles on the list.  ...  In [1] , an approach to the CDCC is considered in which, rather than find cycle double covers in the graph G, one can instead find cycle double covers in the line graph L(G).  ... 
<span class="external-identifiers"> <a target="_blank" rel="external noopener" href="https://arxiv.org/abs/1510.02075v2">arXiv:1510.02075v2</a> <a target="_blank" rel="external noopener" href="https://fatcat.wiki/release/oqcg2zwd5rhm3azr5stejxcosa">fatcat:oqcg2zwd5rhm3azr5stejxcosa</a> </span>
<a target="_blank" rel="noopener" href="https://web.archive.org/web/20191014205728/https://arxiv.org/pdf/1510.02075v2.pdf" title="fulltext PDF download" data-goatcounter-click="serp-fulltext" data-goatcounter-title="serp-fulltext"> <button class="ui simple right pointing dropdown compact black labeled icon button serp-button"> <i class="icon ia-icon"></i> Web Archive [PDF] <div class="menu fulltext-thumbnail"> <img src="https://blobs.fatcat.wiki/thumbnail/pdf/46/99/469975b2a7a2399423dbab01e954c9dae0f5ea2b.180px.jpg" alt="fulltext thumbnail" loading="lazy"> </div> </button> </a> <a target="_blank" rel="external noopener" href="https://arxiv.org/abs/1510.02075v2" title="arxiv.org access"> <button class="ui compact blue labeled icon button serp-button"> <i class="file alternate outline icon"></i> arxiv.org </button> </a>

Signed Cycle Double Covers

Lingsheng Shi, Zhang Zhang
<span title="2018-12-21">2018</span> <i title="The Electronic Journal of Combinatorics"> <a target="_blank" rel="noopener" href="https://fatcat.wiki/container/v5dyak6ulffqfara7hmuchh24a" style="color: black;">Electronic Journal of Combinatorics</a> </i> &nbsp;
The cycle double cover conjecture states that every bridgeless graph has a collection of cycles which together cover every edge of the graph exactly twice.  ...  In this article, we prove a weak version of this conjecture that is the existence of a signed cycle double cover for all bridgeless graphs.  ...  A collection of cycles of G is called a cycle cover if it covers each edge of G. A cycle double cover of G is such a cycle cover of G that each edge lies on exactly two cycles.  ... 
<span class="external-identifiers"> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.37236/6760">doi:10.37236/6760</a> <a target="_blank" rel="external noopener" href="https://fatcat.wiki/release/g3d4tyod2zhztklvju3azqwphi">fatcat:g3d4tyod2zhztklvju3azqwphi</a> </span>
<a target="_blank" rel="noopener" href="https://web.archive.org/web/20200213210352/https://www.combinatorics.org/ojs/index.php/eljc/article/download/v25i4p63/pdf" title="fulltext PDF download" data-goatcounter-click="serp-fulltext" data-goatcounter-title="serp-fulltext"> <button class="ui simple right pointing dropdown compact black labeled icon button serp-button"> <i class="icon ia-icon"></i> Web Archive [PDF] <div class="menu fulltext-thumbnail"> <img src="https://blobs.fatcat.wiki/thumbnail/pdf/65/a1/65a1ac002f568661509143a56bf9d18564013236.180px.jpg" alt="fulltext thumbnail" loading="lazy"> </div> </button> </a> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.37236/6760"> <button class="ui left aligned compact blue labeled icon button serp-button"> <i class="unlock alternate icon" style="background-color: #fb971f;"></i> Publisher / doi.org </button> </a>

Page 6629 of Mathematical Reviews Vol. , Issue 92m [page]

<span title="">1992</span> <i title="American Mathematical Society"> <a target="_blank" rel="noopener" href="https://archive.org/details/pub_mathematical-reviews" style="color: black;">Mathematical Reviews </a> </i> &nbsp;
6629 of the graph appears in exactly two cycles of the family. A cycle double cover of G is reducible if some subfamily of it is a cycle double cover of a proper subgraph of G.  ...  B 47 (1989), no. 3, 251-261; MR 90m:05118] that if C is an irreducible cycle double cover of G such that 7(G, C) # 2, then there exist both a nonseparating cycle not in C and a cycle that is not in C and  ... 
<span class="external-identifiers"> </span>
<a target="_blank" rel="noopener" href="https://archive.org/details/sim_mathematical-reviews_1992-12_92m/page/6629" title="read fulltext microfilm" data-goatcounter-click="serp-fulltext" data-goatcounter-title="serp-fulltext"> <button class="ui simple right pointing dropdown compact black labeled icon button serp-button"> <i class="icon ia-icon"></i> Archive [Microfilm] <div class="menu fulltext-thumbnail"> <img src="https://archive.org/serve/sim_mathematical-reviews_1992-12_92m/__ia_thumb.jpg" alt="fulltext thumbnail" loading="lazy"> </div> </button> </a>

Approximation Algorithms for Restricted Cycle Covers Based on Cycle Decompositions [article]

Bodo Manthey
<span title="2006-12-15">2006</span> <i > arXiv </i> &nbsp; <span class="release-stage" >pre-print</span>
A cycle cover of a graph is a set of cycles such that every vertex is part of exactly one cycle. An L-cycle cover is a cycle cover in which the length of every cycle is in the set L.  ...  On the one hand, we show that for almost all L, computing L-cycle covers of maximum weight in directed and undirected graphs is APX-hard and NP-hard.  ...  A single is a single edge (or a path of length one) in a graph, while a double is a path of length two. Previous Results Undirected Cycle Covers.  ... 
<span class="external-identifiers"> <a target="_blank" rel="external noopener" href="https://arxiv.org/abs/cs/0604020v4">arXiv:cs/0604020v4</a> <a target="_blank" rel="external noopener" href="https://fatcat.wiki/release/jxpglvelengo3k344m3bzfm4dm">fatcat:jxpglvelengo3k344m3bzfm4dm</a> </span>
<a target="_blank" rel="noopener" href="https://web.archive.org/web/20191013143630/https://arxiv.org/pdf/cs/0604020v3.pdf" title="fulltext PDF download [not primary version]" data-goatcounter-click="serp-fulltext" data-goatcounter-title="serp-fulltext"> <button class="ui simple right pointing dropdown compact black labeled icon button serp-button"> <i class="icon ia-icon"></i> Web Archive [PDF] <span style="color: #f43e3e;">&#10033;</span> <div class="menu fulltext-thumbnail"> <img src="https://blobs.fatcat.wiki/thumbnail/pdf/47/cb/47cb892145f0ad06f969174bbfbd030237b92234.180px.jpg" alt="fulltext thumbnail" loading="lazy"> </div> </button> </a> <a target="_blank" rel="external noopener" href="https://arxiv.org/abs/cs/0604020v4" title="arxiv.org access"> <button class="ui compact blue labeled icon button serp-button"> <i class="file alternate outline icon"></i> arxiv.org </button> </a>

Strong shortest path union cover for some networks and Sierpi\'{n}ski graphs

Theresal Santiagu, Xavier Antony, Mathew Deepa
<span title="">2020</span> <i title="Malaya Journal of Matematik"> <a target="_blank" rel="noopener" href="https://fatcat.wiki/container/d2s26e277ra2vlsq7jnndzx34i" style="color: black;">Malaya Journal of Matematik</a> </i> &nbsp;
Strong Shortest path Union covering number of a graph is the minimum cardinality among all strong shortest path union cover of G and it is denoted by SSPC U (G).  ...  Let G = (V, E) be a graph. Strong shortest path union cover S⊆V (G) is defined as for all eεE(G), there exists uεS such that e lies on unique fixed shortest path u − v where vεV (G).  ...  Thus n − 1 5 vertices form the strong shortest path union cover in the inner cycle C 0 and the outer cycle C 1 of the Double wheel graph.  ... 
<span class="external-identifiers"> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.26637/mjm0s20/0020">doi:10.26637/mjm0s20/0020</a> <a target="_blank" rel="external noopener" href="https://fatcat.wiki/release/7clseusz5zebldpqjvei6xzvsu">fatcat:7clseusz5zebldpqjvei6xzvsu</a> </span>
<a target="_blank" rel="noopener" href="https://web.archive.org/web/20200506162101/http://malayajournal.org/articles/MJM0S200020.pdf" title="fulltext PDF download" data-goatcounter-click="serp-fulltext" data-goatcounter-title="serp-fulltext"> <button class="ui simple right pointing dropdown compact black labeled icon button serp-button"> <i class="icon ia-icon"></i> Web Archive [PDF] <div class="menu fulltext-thumbnail"> <img src="https://blobs.fatcat.wiki/thumbnail/pdf/fb/c3/fbc3b1a5d36b61f3f1d5e92cdf02e46a8bf33d65.180px.jpg" alt="fulltext thumbnail" loading="lazy"> </div> </button> </a> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.26637/mjm0s20/0020"> <button class="ui left aligned compact blue labeled icon button serp-button"> <i class="unlock alternate icon" style="background-color: #fb971f;"></i> Publisher / doi.org </button> </a>

Tropicalization of theta characteristics, double covers, and Prym varieties

David Jensen, Yoav Len
<span title="2018-01-06">2018</span> <i title="Springer Nature"> <a target="_blank" rel="noopener" href="https://fatcat.wiki/container/jjaooxtuefhdjnk64q3lsthiru" style="color: black;">Selecta Mathematica, New Series</a> </i> &nbsp;
We then study the relationship between unramified double covers of a tropical curve and its theta characteristics, and use this to define the tropical Prym variety.  ...  We study the behavior of theta characteristics on an algebraic curve under the specialization map to a tropical curve.  ...  We are grateful to Matt Baker for insightful remarks on a previous version of this manuscript, and thank Sam Payne, Joe Rabinoff, Dhruv Ranganathan, and Farbod Shokrieh for fielding our questions.  ... 
<span class="external-identifiers"> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.1007/s00029-017-0379-6">doi:10.1007/s00029-017-0379-6</a> <a target="_blank" rel="external noopener" href="https://fatcat.wiki/release/rcqm2aak2zcurfmwgvwm76zqla">fatcat:rcqm2aak2zcurfmwgvwm76zqla</a> </span>
<a target="_blank" rel="noopener" href="https://web.archive.org/web/20200827005045/https://arxiv.org/pdf/1606.02282v1.pdf" title="fulltext PDF download [not primary version]" data-goatcounter-click="serp-fulltext" data-goatcounter-title="serp-fulltext"> <button class="ui simple right pointing dropdown compact black labeled icon button serp-button"> <i class="icon ia-icon"></i> Web Archive [PDF] <span style="color: #f43e3e;">&#10033;</span> <div class="menu fulltext-thumbnail"> <img src="https://blobs.fatcat.wiki/thumbnail/pdf/14/b0/14b06a15f3fa7029486a0ff5ac8f4cdbd53c163a.180px.jpg" alt="fulltext thumbnail" loading="lazy"> </div> </button> </a> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.1007/s00029-017-0379-6"> <button class="ui left aligned compact blue labeled icon button serp-button"> <i class="external alternate icon"></i> springer.com </button> </a>

Subject Index

<span title="">2007</span> <i title="Elsevier BV"> <a target="_blank" rel="noopener" href="https://fatcat.wiki/container/usw2n4yaarcurchx7i4on2iqea" style="color: black;">Journal of Discrete Algorithms</a> </i> &nbsp;
Character sets of strings, 330; A linear time algorithm for the inver-Label Cover Approximation algorithms for the Label-Cover MAX and Red-Blue Set Cover problems, 55 Lattice animals On the complexity  ...  a set of correlated patterns, 149 N P-hard Generalized function matching, 514 On-line algorithm On-line load balancing made simple: Greedy strikes back, 162 Online algorithms A primal-dual algorithm  ... 
<span class="external-identifiers"> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.1016/s1570-8667(07)00076-7">doi:10.1016/s1570-8667(07)00076-7</a> <a target="_blank" rel="external noopener" href="https://fatcat.wiki/release/wfqxglrznfb6do3wyittd5pfbi">fatcat:wfqxglrznfb6do3wyittd5pfbi</a> </span>
<a target="_blank" rel="noopener" href="https://web.archive.org/web/20190416024630/https://core.ac.uk/download/pdf/82335072.pdf" title="fulltext PDF download" data-goatcounter-click="serp-fulltext" data-goatcounter-title="serp-fulltext"> <button class="ui simple right pointing dropdown compact black labeled icon button serp-button"> <i class="icon ia-icon"></i> Web Archive [PDF] <div class="menu fulltext-thumbnail"> <img src="https://blobs.fatcat.wiki/thumbnail/pdf/f7/d0/f7d0214957c947cdc36ee7436319c4ee93013679.180px.jpg" alt="fulltext thumbnail" loading="lazy"> </div> </button> </a> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.1016/s1570-8667(07)00076-7"> <button class="ui left aligned compact blue labeled icon button serp-button"> <i class="external alternate icon"></i> elsevier.com </button> </a>

Supereulerian graphs: A survey

Paul A. Catlin
<span title="">1992</span> <i title="Wiley"> <a target="_blank" rel="noopener" href="https://fatcat.wiki/container/ukzsjb6a6zhyxnjl6nb2mmjc6m" style="color: black;">Journal of Graph Theory</a> </i> &nbsp;
There is a reduction method to determine whether a graph is supereulerian, and it can also be applied to study other concepts, e.g., hamiltonian line graphs, a certain type of double cycle cover, and the  ...  total interval number of a graph.  ...  , and most of the literature on cycle double covers not concerning S 3 .  ... 
<span class="external-identifiers"> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.1002/jgt.3190160209">doi:10.1002/jgt.3190160209</a> <a target="_blank" rel="external noopener" href="https://fatcat.wiki/release/tgp5puuagzf6pgdn7ng623zdzq">fatcat:tgp5puuagzf6pgdn7ng623zdzq</a> </span>
<a target="_blank" rel="noopener" href="https://web.archive.org/web/20160418074628/http://www.math.wvu.edu:80/~hjlai/Pdf/Catlin_Pdf/Catlin42a.pdf" title="fulltext PDF download" data-goatcounter-click="serp-fulltext" data-goatcounter-title="serp-fulltext"> <button class="ui simple right pointing dropdown compact black labeled icon button serp-button"> <i class="icon ia-icon"></i> Web Archive [PDF] <div class="menu fulltext-thumbnail"> <img src="https://blobs.fatcat.wiki/thumbnail/pdf/f3/70/f3706f6ebdeb396da55470773e7bf0de65a5e9d3.180px.jpg" alt="fulltext thumbnail" loading="lazy"> </div> </button> </a> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.1002/jgt.3190160209"> <button class="ui left aligned compact blue labeled icon button serp-button"> <i class="external alternate icon"></i> wiley.com </button> </a>
&laquo; Previous Showing results 1 &mdash; 15 out of 122,516 results