A copy of this work was available on the public web and has been preserved in the Wayback Machine. The capture dates from 2019; you can also visit the original URL.
The file type is application/pdf
.
Filters
NP-Complete decision problems for binary quadratics
1978
Journal of computer and system sciences (Print)
Thus only the question for binary quadratics
remains in the gap
between tractable ("xl2 + I% -y = 0,
% it Y 65 WY
the problem of deciding whether there are natural-number
solutions is NP-complete ...
We show that for the two-variable quadratics of the form c& + fly -y = 0; 01, fi, y E w, the problem is &Y-complete. Xl .*a x,J = 0 has a solution). ...
OPEN PROBLEM 7 (classification of the set PY of prime numbers). PY E NP [17] , and PY E P(ERH) [15] . ...
doi:10.1016/0022-0000(78)90044-2
fatcat:bmhpbziwwvbgpgcslr66jv3pua
Computational Complexity of Quadratic Unconstrained Binary Optimization
[article]
2022
arXiv
pre-print
In this paper, we study the computational complexity of the quadratic unconstrained binary optimization (QUBO) problem under the functional problem FP^NP categorization. ...
We also study the computational complexity of the decision version of the QUBO problem with integer coefficients. We prove that this problem is DP-complete. ...
Acknowledgements We want to thank Akira Miki and Chih-Hong Cheng for useful advice. ...
arXiv:2109.10048v2
fatcat:pmovoz3y3jft7j42glozpcvgzm
MPF Problem over Modified Medial Semigroup Is NP-Complete
2018
Symmetry
We are considering a problem introduced in our previous paper and prove that tis problem is NP-Complete. ...
The proof is based on the dual interpretation of well known multivariate quadratic (MQ) problem defined over the binary field as a system of MQ equations, and as a general satisfiability (GSAT) problem ...
Therefore, it is very desirable to try to prove NP-Completeness of MPF problem. In [6] the NP-Completeness of a more general problem named as multivariate quadratic power problem is presented. ...
doi:10.3390/sym10110571
fatcat:sr7lkoc3bbennip4vdnzxx37au
NP-complete decision problems for quadratic polynomials
1976
Proceedings of the eighth annual ACM symposium on Theory of computing - STOC '76
In this a r t i c l e we show the NP-completeness of some simple number-theoretic problems. Natural simplifications of these problems invariably are known to be in P. ...
Unless P=NP this is impossible, even for a class of quadratic diophantine equations in two unknowns for which a decision procedure in the original sense is in fact a v a i l a b l e . . ...
be NP-complete, we hope that the NP-completeness of these problems w i l l play a role in showing the NP-completeness of further problems of a numerical nature, much as the s a t i s f i a b i l i t y ...
doi:10.1145/800113.803627
dblp:conf/stoc/MandersA76
fatcat:sim4pz2f6ndkvmrc6vx66uur7a
Mixed-integer Quadratic Programming is in NP
[article]
2014
arXiv
pre-print
In this paper, we prove that the decision version of mixed-integer quadratic programming is in NP, thereby showing that it is NP-complete. ...
Mixed-integer quadratic programming is the problem of optimizing a quadratic function over points in a polyhedral set where some of the components are restricted to be integral. ...
Corollary 2 . 2 The decision versions of IQP and MIQP are NP-complete.
2 . 2 Two general quadratic inequalities: In the presence of two quadratic inequalities (in fact one quadratic equation) in two ...
arXiv:1407.4798v1
fatcat:4lv3hbvggrgkvbh4zptj6ywdyy
Mixed-integer quadratic programming is in NP
2016
Mathematical programming
In this paper, we prove that the decision version of mixed-integer quadratic programming is in NP, thereby showing that it is NP-complete. ...
Mixed-integer quadratic programming (MIQP) is the problem of optimizing a quadratic function over points in a polyhedral set where some of the components are restricted to be integral. ...
Corollary 2 . 2 The decision versions of IQP and MIQP are NP-complete.
2 . 2 Two general quadratic inequalities: In the presence of two quadratic inequalities (in fact one quadratic equation) in two ...
doi:10.1007/s10107-016-1036-0
fatcat:kejohfagyjau7g4jidcmlpytdy
The Complexity of Decision Versus Search
1994
SIAM journal on computing (Print)
A basic question about NP is whether or not search reduces in polynomial time to decision. ...
reduce to decision. ...
We thank Oded Goldreich for many helpful comments on the paper. We thank Satish Thate for ...
doi:10.1137/s0097539792228289
fatcat:5h53wc3gsbeqjaneurwasrqa5a
Page 1848 of Mathematical Reviews Vol. , Issue 98C
[page]
1998
Mathematical Reviews
“We show that a binary algebraic decision tree T can be con- verted to a ternary algebraic decision tree TJ’ at the expense of a quadratic increase in size and a linear increase in depth.”
98c:68068 68Q15 ...
there exist binary decision trees for which such a simulation necessarily entails an exponential increase in size. ...
Binary Solutions for Overdetermined Systems of Linear Equations
[article]
2011
arXiv
pre-print
This paper presents a finite step method for computing the binary solution to an overdetermined system of linear algebraic equations Ax = b, where A is an m x n real matrix of rank n < m, and b is a real ...
A class of binary quadratic programming problem, such as with non-negative coefficients for the quadratic terms, is also known as NP problem; see Garey [6, p. 245] . Also see Axehill [1] . ...
However, a problem very similar to (1) has been defined as NP-complete problem by Murty and Kabadi [9] . This NP-complete problem is stated as follows. ...
arXiv:1101.3056v1
fatcat:gozz6bkaing6jcwk55y2wexg54
Quasilinear time complexity theory
[chapter]
1994
Lecture Notes in Computer Science
We show, however, that the important equivalence between search problems and decision problems in polynomial time is unlikely to carry over: if search reduces to decision for SAT in quasi-linear time, ...
Whereas all previously known versions of the Valiant-Vazirani reduction from NP to parity run in quadratic time, we give a new construction using error-correcting codes that runs in quasilinear time. ...
We thank Stephen Bloch and Michael Loui for comments on earlier versions of this paper, and Jonathan Buss, Judy Goldsmith, Jack Lutz, and Kripa Sundar for pertinent discussions. ...
doi:10.1007/3-540-57785-8_134
fatcat:aixgp5vqpfc2li3bvmyfd7f7iq
Petri Net Modeling for Ising Model Formulation in Quantum Annealing
2021
Applied Sciences
models, and then converted into binary quadratic nets, equivalent to Ising models. ...
Quantum annealing is an emerging new platform for combinatorial optimization, requiring an Ising model formulation for optimization problems. ...
For example, we solve a search variant decision problem to obtain a viable schedule to complete all tasks by a given deadline in scheduling problems. ...
doi:10.3390/app11167574
fatcat:2djprequajdpnpah6pmg45jurq
On the theory of average case complexity
1992
Journal of computer and system sciences (Print)
Levin's work can be viewed as the basic for a theory of average NP-completeness, much the same way as [2] (and [19]) are the basis for the theory of NP-completeness. ...
Our results include: l the equivalence of search and decision problems in the context of average case complexity; 9 an initial analysis of the structure of distributional-NP (i.e., NP problems coupled ...
ACKNOWLEDGMENTS We thank Shimon Even, Mauricio Karchmer, Hugo Krawczyk, Ronny Roth, and Avi Wigderson for helpful discussions. We are grateful to Leonid Levin for very interesting discussions. ...
doi:10.1016/0022-0000(92)90019-f
fatcat:ngf4z4bn65binajjhc2zkwabd4
On quasilinear-time complexity theory
1995
Theoretical Computer Science
We show, however, that the important equivalence between search problems and decision problems in polynomial time is unlikely to carry over: if search reduces to decision for SAT in quasilinear time, then ...
Whereas all previously known versions of the Valiant-Vazirani reduction from NP to parity run in quadratic time, we give a new construction using error-correcting codes that runs in quasilinear time. ...
Fischer, Judy Goldsmith, Jack Lutz, and Kripa Sundar for pertinent discussions. We also thank the anonymous referees for catching a number of technical glitches in our original submission. ...
doi:10.1016/0304-3975(95)00031-q
fatcat:rjdzekyykfcajflu7tylnlkaf4
On the theory of average case complexity
1989
Proceedings of the twenty-first annual ACM symposium on Theory of computing - STOC '89
Our results include: the equivalence of search and decision problems in the context of average case complexity; an initial analysis of the structure of distributional-NP (i.e. ...
Previous works Levin 84, Gurevich 87, Venkatesan and Levin 88] have focused on the existence of complete problems. We widen the scope to other basic questions in computational complexity. ...
We are grateful to Leonid Levin for very interesting discussions. Finaly, we wish to thank Yuri Gurevich for pointing out a misleading statement in an early version of the proof of Theorem 9. ...
doi:10.1145/73007.73027
dblp:conf/stoc/Ben-DavidCGL89
fatcat:3hmaanxtzjcwjbm4bxjxmysrcq
Formulations for joint order picking problems in low-level picker-to-part systems
2020
Bulletin of Electrical Engineering and Informatics
The number of constraints and decision variables required for each proposed model is calculated, demonstrating the complexity of solving medium and long-sized problems in reasonable computing time using ...
This article introduces several mathematical formulations for the joint order picking problem (JOPP) in low-level picker-to-part warehousing systems. ...
methods prevail as the most suitable option to obtain high -quality solutions in short computing times for NP-Hard problems since the decisions made at a joint order picking problem must be taken repetitively ...
doi:10.11591/eei.v9i2.2110
fatcat:ptglqblwvnc7fevfkubc7p4nxa
« Previous
Showing results 1 — 15 out of 11,503 results