Filters








148 Hits in 1.3 sec

IMPEDANCE VIBRATOR WITH ARBITRARY POINT OF EXCITATION

Mikhail V. Nesterenko, V. A. Katrich, Victor M. Dakhov, Sergey L. Berdnik
2008 Progress in Electromagnetics Research B  
0 δ(s + s δ ) = E s 0s (s) + E a 0s (s), E s 0s (s) = V 0 2 [δ(s + s δ ) + δ(s − s δ )], (18) E a 0s (s) = V 0 2 [δ(s + s δ ) − δ(s − s δ )], where E s 0s (s) is the symmetrical (E s 0s (s) = E s 0s (−  ...  Thus, the scattering field in the whole environment is fully defined by setting tangential components of the field on the S boundary of the V volume.  ... 
doi:10.2528/pierb08022805 fatcat:dsfjyusysbctzlacoriv23nlsy

ANALYTICAL METHODS IN THEORY OF SLOT-HOLE COUPLING OF ELECTRODYNAMIC VOLUMES

Mikhail V. Nesterenko, V. A. Katrich, Yuriy M. Penkin, Sergey L. Berdnik
2007 Electromagnetic Waves  
greater number of the considered electrodynamic structures the calculated values are compared with the results, obtained by numerical methods (also using commercial programs) and the experimental data. 80 Nesterenko  ...  { r v , E in sl }+ H v τ { r v , E ext sl } on S in , H v τ { r v , E in sl }+ H v τ { r v , E ext sl } = H ext τ { r ext , E ext sl } on S ext ( E in,ext sl ξ = E in,ext 0 f in,ext (s in,ext )χ in,ext  ...  The local coordinate system x v , y v , z v is introduced in this region.Let surfaces of waveguide section ends (z in,ext = 0) be generally characterized by different distributed impedances Zin,ext s of  ... 
doi:10.2528/pier06121203 fatcat:uw3d7b5nsnabjid3lrodmeowai

IMPEDANCE SYNTHESIS OF PLANE DIFFRACTION VIBRATOR ARRAYS

Yuriy M. Penkin, Viktor A. Katrich, Mikhail V. Nesterenko, Sergey L. Berdnik, Svetlana V. Pshenichnaya
2020 Progress In Electromagnetics Research M  
Then Equation (6) can be rewritten as E θ (θ, ϕ) = J 0 e −i(Nz+1)u/2 e −i(Nx+1)v/2f 1 (θ) cos θ sin θ Nz n=1 Nx m=1 e i(nu+mv) e −i[(n−1)Δu+(m−1)Δv] . (8) As can be seen from the above formulas, Equations  ...  ϕ max ) is determined by the following relations cos θ max = Δu/k 1 d z and sin θ max cos ϕ max = Δv/k 1 d x .  ... 
doi:10.2528/pierm19080905 fatcat:tznzv3ews5ahbnwyyt27gf23ne

SYSTEM OF MATERIAL OBJECTS IN ELECTRODYNAMIC VOLUMES

Mikhail V. Nesterenko, Viktor A. Katrich, Sergey L. Berdnik, Victor I. Kijko
2021 Progress In Electromagnetics Research C  
The permittivity and permeability of medium in the volume V are ε v 1 , μ v 1 .  ...  The volume V contains material objects enclosed in local volumes V m (m = 1, 2, . . . , M) bounded by closed smooth surfaces S m .  ... 
doi:10.2528/pierc20122301 fatcat:5iahqph3jbcfvdsptrkuvb5dp4

DEVELOPMENT OF FUNDAMENTAL THEORY OF THIN IMPEDANCE VIBRATORS

Yuriy M. Penkin, Victor A. Katrich, Mikhail V. Nesterenko
2016 Progress In Electromagnetics Research M  
Here V 0 is the voltage amplitude, δ(s − s 0 ) is one-dimensional Dirac delta function. Figure 1 . 1 The geometry of the vibrator structure.  ...  The volume integral is taken over the entire volume V (dv is volume element), and the surface integral is taken over the entire surface (ds is the area element in the primed coordinates).  ... 
doi:10.2528/pierm15120105 fatcat:3qtntvs355gztnkzptltzaau4y

MATHEMATICAL MODEL OF LARGE RECTENNA ARRAYS FOR WIRELESS ENERGY TRANSFER

Dmitriy V. Gretskih, Andrey V. Gomozov, Viktor A. Katrich, Anatoliy I. Luchaninov, Mikhail V. Nesterenko, Yuriy M. Penkin
2017 Progress in Electromagnetics Research B  
A mathematical model of a large rectenna array (LRA) is presented. It is shown that matrices describing the LRA linear subsystem have a number of specific features that must be considered when the rectenna mathematical model is developed. The state equation for the LRA was obtained. It is shown that the model functioning in nonlinear mode of the infinite rectenna array can be reduced to the parameters of one equivalent receiver-rectifier element (RRE) at the fundamental frequency and its
more » ... c. The external parameters of RREs and characteristics of LRAs were obtained.
doi:10.2528/pierb17010503 fatcat:hqy7giowfbeahipz2p45pr5qjy

WAVEGUIDE RADIATION OF THE COMBINED VIBRATOR-SLOT STRUCTURES

Sergey L. Berdnik, Viktor A. Katrich, Mikhail V. Nesterenko, Yuriy M. Penkin
2020 Progress in Electromagnetics Research B  
Then, the final expressions for the currents based on Eq. ( 3 ) can be written as: J v (s v ) = − iω 2k 2 H 0 J v f v (s v ), J V (s V ) = − iω 2k 2 H 0 J V f V (s V ), J sl (s sl ) = − iω 2k 2 H 0 [J  ...  , r 1 = r 2 = r, α 1 = α 2 = α, 2L 4 = 2L V , r 4 = r V , α 4 = α V , ZS1 (s 1 ) = ZS2 (s 2 ) = ZS (s v ) = 2πr v z iv (s v )/Z 0 , ZS4 (s 4 ) = ZSV (s V ) = 2πr V z iV (s V )/Z 0 , k1 = k2 = k = k + i  ... 
doi:10.2528/pierb20052804 fatcat:zymoopvtujhvlnqmfoh4t2hryi

Electromagnetic Waves Excitation by Thin Impedance Vibrators and Narrow Slots in Electrodynamic Volumes [chapter]

Mikhail V. Nesterenko, Sergey L. Berdnik, Victor A. Katrich, Yuriy M. Penkin
2015 Advanced Electromagnetic Waves  
v v v L V v v s v v v s v i v v v L v k J s G s s s i E s i z s J s s we we - ae ö ¢ ¢ ¢ + = - + ç ÷ ç ÷ è ø ò (9) d d d d d d 1 2 2 2 2 2 1 2 0 2 2 1 2 1 1 ( ) ( , ) ( ) ( , ) ( ) ae ö ae ö ¢ ¢ ¢ ¢ ¢  ...  For the arbitrary vibrator-slot structures and coupled electrodynamic volumes expressions for v v s v v v v L s a v v L s a v v s v v v v Energy characteristics Wavelength λ, mm Z S1 =ikr 1 ln(4.0  ... 
doi:10.5772/61188 fatcat:cy3mgityffdo3heuls7sirdhyq

THE ASYMPTOTIC SOLUTION OF AN INTEGRAL EQUATION FOR MAGNETIC CURRENT IN A PROBLEM OF WAVEGUIDES COUPLING THROUGH NARROW SLOTS

Mikhail V. Nesterenko, V. A. Katrich
2006 Electromagnetic Waves  
Based on the asymptotic method of averaging, an approximate analytical solution of the integral equation concerning a magnetic current in slot-hole coupling apertures of electrodynamic volumes, which differ profitably from the known ones in literature, has been obtained. The formulas for the currents and characteristics scattering of transverse and longitudinal slots in common broad and narrow walls of rectangular waveguides are given. The comparison to results obtained by other methods and experimental data has been done.
doi:10.2528/pier05060902 fatcat:fh2so2ewlbghzpmlqtl433sftm

SURFACE IMPEDANCE OF THIN GRAPHITE FILMS AT MICROWAVE FREQUENCIES

Yuriy M. Penkin, Viktor A. Katrich, Mikhail V. Nesterenko, Dmitriy Yu. Penkin
2018 Progress In Electromagnetics Research M  
Surface impedance of thin graphite films with metallic properties is evaluated by a waveguide technique based on measuring reflection and transmission coefficients of thin film membranes at operating frequencies in rectangular waveguides. One-and two-layer membranes of finite thickness, completely filling the waveguide cross-section, are investigated. Formulas allowing analytical estimates of surface impedances for nonmagnetic films made of amorphous carbon are derived. Simulation results for
more » ... aphite films at frequencies from 5 to 10 GHz are analyzed.
doi:10.2528/pierm18053003 fatcat:bq55yizorfealcxddbt6tw4zjy

COMBINED VIBRATOR-SLOT STRUCTURES IN ELECTRODYNAMIC VOLUMES

Mikhail V. Nesterenko, Victor A. Katrich, Yuriy M. Penkin, Sergey L. Berdnik, Victor I. Kijko
2012 Progress in Electromagnetics Research B  
distributions F W g z1 (kr,kL v ) = − 2iZ S k 2 L v r   k L v 2 2 (2 + cos 2kL v ) − 7 4 sin 2k L v − 2(coskL v − 1) , (25) F W g z2 (kr,kL v ) = − 2iZ S k 2 L v r   k L v 2 2 (2 + cos 2kL v ) + 7  ...  e −kzr sin 2 k x x 01 [sinkL v cos k y L v − (k/k y ) coskL v sin k y L v ] 2 , F W g z (kr,kL v ) = − i r L v −Lv f 2 v (s 1 )Z S (s 1 )ds 1 .  ... 
doi:10.2528/pierb11101008 fatcat:j25li5juvfandirue47b5fkmcm

ASYMMETRIC IMPEDANCE VIBRATOR FOR MULTI-BAND COMMUNICATION SYSTEMS

Mikhail V. Nesterenko, Viktor A. Katrich, Sergey L. Berdnik, Oleksandr M. Dumin, Yevhenii O. Antonenko
2021 Progress In Electromagnetics Research M  
(7) can be written as E 0s (s) = V 0 δ(s + s δ ) = E s 0s (s) + E a 0s (s), E s 0s (s) = V 0 2 [δ(s + s δ ) + δ(s − s δ )] , E a 0s (s) = V 0 2 [δ(s + s δ ) − δ(s − s δ )] , (8) J(s) = J s (s) + J  ...  SW R) in the antenna feeder with the wave impedance W is equal to: V SW R = 1 + |S 11 | 1 − |S 11 | , (13) where S 11 = Z in −W Z in +W is the reflection coefficient in the feeder.  ... 
doi:10.2528/pierm21031207 fatcat:tmrgihdkbrcblald6rhi3vwanu

FORMATION OF RADIATION FIELDS OF LINEAR VIBRATOR ARRAYS BY USING IMPEDANCE SYNTHESIS

Yuriy M. Penkin, Viktor A. Katrich, Mikhail V. Nesterenko
2017 Progress In Electromagnetics Research M  
If the vibrator is excited in the middle by a δ-generator with the voltage amplitude V 0 , i.e., (13) can be reduced to E 0s (s ′ ) = V 0 δ(s − s ′ ), Formula J(s) ≈ αJ 1 (s) = − iωε 1 αV 0 2k m cosk  ... 
doi:10.2528/pierm17031602 fatcat:n7frprq5uzh57homs4xyl76y4i

ALTERNATIVE REPRESENTATION OF GREEN'S FUNCTION FOR ELECTRIC FIELD ON SURFACES OF THIN VIBRATORS

Yuriy M. Penkin, Viktor Katrich, Mikhail V. Nesterenko
2016 Progress In Electromagnetics Research M  
r ) + k 2 1 ĜA ( r, r ) = −4π Îδ(| r − r |), (2) E ( r) = k 2 1 iωε 1 V ĜE r, r J e r d r , (3) E ( r) = 1 iωε 1 graddiv + k 2 1 V ĜA r, r J e r d r , (4) The difference between formulas (3) and ( 4  ...  If the source is given by an electric current density J e ( r ) in the volume V , the electric field can be represented by following expressions: ) − k 2 1 ĜE ( r, r ) = 4π Îδ(| r − r |), (1) Δ ĜA ( r,  ... 
doi:10.2528/pierm16102604 fatcat:273q5yb2wzc6rfrpnplfgw5mty

ELECTROMAGNETIC WAVES RADIATION BY A VIBRATORS SYSTEM WITH VARIABLE SURFACE IMPEDANCE

Sergey L. Berdnik, Viktor Katrich, Mikhail V. Nesterenko, Yuriy M. Penkin
2016 Progress In Electromagnetics Research M  
The active vibrator (n = 1) is excited at its center (s 1 = 0) by δ-generator of harmonic oscillations with voltage amplitude V 0 .  ...  Thus, the projection of the electric field of extraneous sources on the longitudinal axis of the active vibrator has only symmetric component E 0s 1 (s 1 ) = E s 0s 1 (s 1 ) = V 0 δ(s 1 ) and the fields  ... 
doi:10.2528/pierm16091605 fatcat:7kosk7jw4rhepifuy5c2mgl5cu
« Previous Showing results 1 — 15 out of 148 results