Filters








16,875 Hits in 6.5 sec

Towards Strong AI

Martin V. Butz
<span title="2021-02-26">2021</span> <i title="Springer Science and Business Media LLC"> <a target="_blank" rel="noopener" href="https://fatcat.wiki/container/dlce7tvip5e5rlsv2ty3chnfpu" style="color: black;">Künstliche Intelligenz</a> </i> &nbsp;
In contrast, various sources of evidence from cognitive science suggest that human brains engage in the active development of compositional generative predictive models (CGPMs) from their self-generated  ...  Guided by evolutionarily-shaped inductive learning and information processing biases, they exhibit the tendency to organize the gathered experiences into event-predictive encodings.  ...  It is provided with the model of the game and learns to identify game-critical, substructural patterns, which it uses to evaluate likely future game states.  ... 
<span class="external-identifiers"> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.1007/s13218-021-00705-x">doi:10.1007/s13218-021-00705-x</a> <a target="_blank" rel="external noopener" href="https://fatcat.wiki/release/dmg53cpxvvc6zpacv65vswtno4">fatcat:dmg53cpxvvc6zpacv65vswtno4</a> </span>
<a target="_blank" rel="noopener" href="https://web.archive.org/web/20210718103238/https://link.springer.com/content/pdf/10.1007/s13218-021-00705-x.pdf?error=cookies_not_supported&amp;code=2955133b-e3a8-47b4-bc4f-deae7f3ae12f" title="fulltext PDF download" data-goatcounter-click="serp-fulltext" data-goatcounter-title="serp-fulltext"> <button class="ui simple right pointing dropdown compact black labeled icon button serp-button"> <i class="icon ia-icon"></i> Web Archive [PDF] <div class="menu fulltext-thumbnail"> <img src="https://blobs.fatcat.wiki/thumbnail/pdf/77/a5/77a52e15ad3358b9a0fce5175dd3d960718b1062.180px.jpg" alt="fulltext thumbnail" loading="lazy"> </div> </button> </a> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.1007/s13218-021-00705-x"> <button class="ui left aligned compact blue labeled icon button serp-button"> <i class="unlock alternate icon" style="background-color: #fb971f;"></i> springer.com </button> </a>

Dynamical Role of Pivotal Brain Regions in Parkinson Symptomatology Uncovered with Deep Learning

Nguyen, Maia, Gao, F. Damasceno, Raj
<span title="2020-01-30">2020</span> <i title="MDPI AG"> <a target="_blank" rel="noopener" href="https://fatcat.wiki/container/5hwrtdnkjvclroyxzt4ty5ijb4" style="color: black;">Brain Sciences</a> </i> &nbsp;
Methods: We test several deep-learning neural network configurations, and report our best results obtained with an autoencoder deep-learning model, run on a 5-fold cross-validation set.  ...  However, the excessive number of features used in these models often conceals their relationship to the Parkinsonian symptomatology.  ...  Code Availability: All codes and datasets used in this work are available at https://github.com/Raj-Lab-UCSF/ Parkinsonian_Symptomatology_Uncovered. Abbreviations  ... 
<span class="external-identifiers"> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.3390/brainsci10020073">doi:10.3390/brainsci10020073</a> <a target="_blank" rel="external noopener" href="https://www.ncbi.nlm.nih.gov/pubmed/32019067">pmid:32019067</a> <a target="_blank" rel="external noopener" href="https://pubmed.ncbi.nlm.nih.gov/PMC7071401/">pmcid:PMC7071401</a> <a target="_blank" rel="external noopener" href="https://fatcat.wiki/release/robrsekhgrfihau2vgsmwzdjbq">fatcat:robrsekhgrfihau2vgsmwzdjbq</a> </span>
<a target="_blank" rel="noopener" href="https://web.archive.org/web/20210717194055/https://res.mdpi.com/d_attachment/brainsci/brainsci-10-00073/article_deploy/brainsci-10-00073-v3.pdf" title="fulltext PDF download" data-goatcounter-click="serp-fulltext" data-goatcounter-title="serp-fulltext"> <button class="ui simple right pointing dropdown compact black labeled icon button serp-button"> <i class="icon ia-icon"></i> Web Archive [PDF] <div class="menu fulltext-thumbnail"> <img src="https://blobs.fatcat.wiki/thumbnail/pdf/22/d8/22d84ab4df1ace56a0338da1c83b935b77abe547.180px.jpg" alt="fulltext thumbnail" loading="lazy"> </div> </button> </a> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.3390/brainsci10020073"> <button class="ui left aligned compact blue labeled icon button serp-button"> <i class="unlock alternate icon" style="background-color: #fb971f;"></i> mdpi.com </button> </a> <a target="_blank" rel="external noopener" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7071401" title="pubmed link"> <button class="ui compact blue labeled icon button serp-button"> <i class="file alternate outline icon"></i> pubmed.gov </button> </a>

A review of possible effects of cognitive biases on the interpretation of rule-based machine learning models [article]

Tomáš Kliegr, Štěpán Bahník, Johannes Fürnkranz
<span title="2020-12-07">2020</span> <i > arXiv </i> &nbsp; <span class="release-stage" >pre-print</span>
The goal of this paper is to discuss to what extent cognitive biases may affect human understanding of interpretable machine learning models, in particular of logical rules discovered from data.  ...  Our review transfers results obtained in cognitive psychology to the domain of machine learning, aiming to bridge the current gap between these two areas.  ...  Introduction This paper aims to investigate the possible effects of cognitive biases on human understanding of machine learning models, in particular inductively learned rules.  ... 
<span class="external-identifiers"> <a target="_blank" rel="external noopener" href="https://arxiv.org/abs/1804.02969v6">arXiv:1804.02969v6</a> <a target="_blank" rel="external noopener" href="https://fatcat.wiki/release/sdmtyot5jbgbjea62g3voi7oe4">fatcat:sdmtyot5jbgbjea62g3voi7oe4</a> </span>
<a target="_blank" rel="noopener" href="https://web.archive.org/web/20210918005730/https://arxiv.org/pdf/1804.02969v6.pdf" title="fulltext PDF download" data-goatcounter-click="serp-fulltext" data-goatcounter-title="serp-fulltext"> <button class="ui simple right pointing dropdown compact black labeled icon button serp-button"> <i class="icon ia-icon"></i> Web Archive [PDF] <div class="menu fulltext-thumbnail"> <img src="https://blobs.fatcat.wiki/thumbnail/pdf/84/77/84779051e2b89487e98d193f3c1e66867d28e5f1.180px.jpg" alt="fulltext thumbnail" loading="lazy"> </div> </button> </a> <a target="_blank" rel="external noopener" href="https://arxiv.org/abs/1804.02969v6" title="arxiv.org access"> <button class="ui compact blue labeled icon button serp-button"> <i class="file alternate outline icon"></i> arxiv.org </button> </a>

Improving Long-Horizon Forecasts with Expectation-Biased LSTM Networks [article]

Aya Abdelsalam Ismail, Timothy Wood, Héctor Corrada Bravo
<span title="2018-04-18">2018</span> <i > arXiv </i> &nbsp; <span class="release-stage" >pre-print</span>
We propose two LSTM ar- chitectures along with two methods for expectation biasing that significantly outperforms standard practice.  ...  We then propose expectation-biasing, an approach motivated by the literature of Dynamic Belief Networks, as a solution to improve long-horizon forecasting using LSTMs.  ...  ), simple machine learning techniques such as support vector machines (SVM) have been applied.  ... 
<span class="external-identifiers"> <a target="_blank" rel="external noopener" href="https://arxiv.org/abs/1804.06776v1">arXiv:1804.06776v1</a> <a target="_blank" rel="external noopener" href="https://fatcat.wiki/release/mzzu74h4lfcu7gh2gxomvsspri">fatcat:mzzu74h4lfcu7gh2gxomvsspri</a> </span>
<a target="_blank" rel="noopener" href="https://web.archive.org/web/20191013005016/https://arxiv.org/pdf/1804.06776v1.pdf" title="fulltext PDF download" data-goatcounter-click="serp-fulltext" data-goatcounter-title="serp-fulltext"> <button class="ui simple right pointing dropdown compact black labeled icon button serp-button"> <i class="icon ia-icon"></i> Web Archive [PDF] <div class="menu fulltext-thumbnail"> <img src="https://blobs.fatcat.wiki/thumbnail/pdf/e7/a9/e7a9095ded11d3fc51775a8b1b94ac20d6d748e7.180px.jpg" alt="fulltext thumbnail" loading="lazy"> </div> </button> </a> <a target="_blank" rel="external noopener" href="https://arxiv.org/abs/1804.06776v1" title="arxiv.org access"> <button class="ui compact blue labeled icon button serp-button"> <i class="file alternate outline icon"></i> arxiv.org </button> </a>

Decision Support for Video-based Detection of Flu Symptoms [article]

Kenneth Lai, Svetlana N. Yanushkevich
<span title="2020-08-24">2020</span> <i > arXiv </i> &nbsp; <span class="release-stage" >pre-print</span>
This paper addresses the capability of using results from a machine-learning model as evidence for a cognitive decision support system.  ...  We propose risk and trust measures as a metric to bridge between machine-learning and machine-reasoning.  ...  The machine learning model provides evidence that is then evaluated for reliability using reasoning techniques.  ... 
<span class="external-identifiers"> <a target="_blank" rel="external noopener" href="https://arxiv.org/abs/2008.10534v1">arXiv:2008.10534v1</a> <a target="_blank" rel="external noopener" href="https://fatcat.wiki/release/alyrgqqpenei5okmatqeydy324">fatcat:alyrgqqpenei5okmatqeydy324</a> </span>
<a target="_blank" rel="noopener" href="https://web.archive.org/web/20200827090355/https://arxiv.org/pdf/2008.10534v1.pdf" title="fulltext PDF download" data-goatcounter-click="serp-fulltext" data-goatcounter-title="serp-fulltext"> <button class="ui simple right pointing dropdown compact black labeled icon button serp-button"> <i class="icon ia-icon"></i> Web Archive [PDF] </button> </a> <a target="_blank" rel="external noopener" href="https://arxiv.org/abs/2008.10534v1" title="arxiv.org access"> <button class="ui compact blue labeled icon button serp-button"> <i class="file alternate outline icon"></i> arxiv.org </button> </a>

Cognitive science as a source of forward and inverse models of human decisions for robotics and control [article]

Mark K. Ho, Thomas L. Griffiths
<span title="2021-09-01">2021</span> <i > arXiv </i> &nbsp; <span class="release-stage" >pre-print</span>
statistical machine learning, and reinforcement learning).  ...  Fortunately, computational cognitive science offers insight into human decision-making using tools that will be familiar to those with backgrounds in optimization and control (e.g., probability theory,  ...  The size of the data set makes it possible to systematically evaluate existing models of choice, and to use machine learning to exhaustively explore the space of possible theories.  ... 
<span class="external-identifiers"> <a target="_blank" rel="external noopener" href="https://arxiv.org/abs/2109.00127v1">arXiv:2109.00127v1</a> <a target="_blank" rel="external noopener" href="https://fatcat.wiki/release/jku3n3irhraabox7biizsu2jo4">fatcat:jku3n3irhraabox7biizsu2jo4</a> </span>
<a target="_blank" rel="noopener" href="https://web.archive.org/web/20210903205450/https://arxiv.org/pdf/2109.00127v1.pdf" title="fulltext PDF download" data-goatcounter-click="serp-fulltext" data-goatcounter-title="serp-fulltext"> <button class="ui simple right pointing dropdown compact black labeled icon button serp-button"> <i class="icon ia-icon"></i> Web Archive [PDF] <div class="menu fulltext-thumbnail"> <img src="https://blobs.fatcat.wiki/thumbnail/pdf/27/6a/276a457ccaabaa410c25d31cb83e54a582688c9e.180px.jpg" alt="fulltext thumbnail" loading="lazy"> </div> </button> </a> <a target="_blank" rel="external noopener" href="https://arxiv.org/abs/2109.00127v1" title="arxiv.org access"> <button class="ui compact blue labeled icon button serp-button"> <i class="file alternate outline icon"></i> arxiv.org </button> </a>

DeepAD: A Robust Deep Learning Model of Alzheimer's Disease Progression for Real-World Clinical Applications [article]

Somaye Hashemifar, Claudia Iriondo, Evan Casey, Mohsen Hejrati
<span title="2022-04-08">2022</span> <i > arXiv </i> &nbsp; <span class="release-stage" >pre-print</span>
The proposed model is trained and tested on various datasets in order to evaluate and validate the results.  ...  However, most machine learning approaches developed for prediction of disease progression are either single-task or single-modality models, which can not be directly adopted to our setting involving multi-task  ...  Multimodal multitask modeling (MMMT) In this experiment, the adversarial loss and the sharpness-aware minimization are evaluated when both modalities are fed to the model to predict all three cognitive  ... 
<span class="external-identifiers"> <a target="_blank" rel="external noopener" href="https://arxiv.org/abs/2203.09096v3">arXiv:2203.09096v3</a> <a target="_blank" rel="external noopener" href="https://fatcat.wiki/release/w63ascaoqnd6tbigxuzcc5cksa">fatcat:w63ascaoqnd6tbigxuzcc5cksa</a> </span>
<a target="_blank" rel="noopener" href="https://web.archive.org/web/20220425184935/https://arxiv.org/pdf/2203.09096v3.pdf" title="fulltext PDF download" data-goatcounter-click="serp-fulltext" data-goatcounter-title="serp-fulltext"> <button class="ui simple right pointing dropdown compact black labeled icon button serp-button"> <i class="icon ia-icon"></i> Web Archive [PDF] <div class="menu fulltext-thumbnail"> <img src="https://blobs.fatcat.wiki/thumbnail/pdf/3d/89/3d89536377f6ad1377e765d7c576c1d0c5b7036c.180px.jpg" alt="fulltext thumbnail" loading="lazy"> </div> </button> </a> <a target="_blank" rel="external noopener" href="https://arxiv.org/abs/2203.09096v3" title="arxiv.org access"> <button class="ui compact blue labeled icon button serp-button"> <i class="file alternate outline icon"></i> arxiv.org </button> </a>

Psychiatric Neural Networks and Precision Therapeutics by Machine Learning

Hidetoshi Komatsu, Emi Watanabe, Mamoru Fukuchi
<span title="2021-04-08">2021</span> <i title="MDPI AG"> <a target="_blank" rel="noopener" href="https://fatcat.wiki/container/jgmgd4z6dzhzziggcczoforhve" style="color: black;">Biomedicines</a> </i> &nbsp;
In this review, decision-making in real life and psychiatric disorders and the applications of machine learning in brain imaging studies on psychiatric disorders are summarized, and considerations for  ...  Machine learning approaches with multidimensional data sets have the potential to not only pathologically redefine mental illnesses but also better improve therapeutic outcomes than DSM/ICD diagnoses.  ...  Acknowledgments: We would like to thank Abul K. Azad and Wei-hsuan Yu for reviewing this manuscript. Conflicts of Interest: The authors declare no conflict of interest.  ... 
<span class="external-identifiers"> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.3390/biomedicines9040403">doi:10.3390/biomedicines9040403</a> <a target="_blank" rel="external noopener" href="https://www.ncbi.nlm.nih.gov/pubmed/33917863">pmid:33917863</a> <a target="_blank" rel="external noopener" href="https://fatcat.wiki/release/qnptg73avbc5bdurwcjvf472p4">fatcat:qnptg73avbc5bdurwcjvf472p4</a> </span>
<a target="_blank" rel="noopener" href="https://web.archive.org/web/20210416131822/https://res.mdpi.com/d_attachment/biomedicines/biomedicines-09-00403/article_deploy/biomedicines-09-00403.pdf" title="fulltext PDF download" data-goatcounter-click="serp-fulltext" data-goatcounter-title="serp-fulltext"> <button class="ui simple right pointing dropdown compact black labeled icon button serp-button"> <i class="icon ia-icon"></i> Web Archive [PDF] <div class="menu fulltext-thumbnail"> <img src="https://blobs.fatcat.wiki/thumbnail/pdf/c4/dc/c4dcb32ebedf096f0b2624bbc92028725ad29587.180px.jpg" alt="fulltext thumbnail" loading="lazy"> </div> </button> </a> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.3390/biomedicines9040403"> <button class="ui left aligned compact blue labeled icon button serp-button"> <i class="unlock alternate icon" style="background-color: #fb971f;"></i> mdpi.com </button> </a>

Reasoning Under Uncertainty: Towards Collaborative Interactive Machine Learning [chapter]

Sebastian Robert, Sebastian Büttner, Carsten Röcker, Andreas Holzinger
<span title="">2016</span> <i title="Springer International Publishing"> <a target="_blank" rel="noopener" href="https://fatcat.wiki/container/2w3awgokqne6te4nvlofavy5a4" style="color: black;">Lecture Notes in Computer Science</a> </i> &nbsp;
We outline open questions and name future challenges that have to be addressed by the research community to enable the use of collaborative interactive machine learning for problem solving in a large scale  ...  In this paper, we present the current state-of-the-art of decision making (DM) and machine learning (ML) and bridge the two research domains to create an integrated approach of complex problem solving  ...  We therefore call those classical machine learning methods automatic machine learning.  ... 
<span class="external-identifiers"> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.1007/978-3-319-50478-0_18">doi:10.1007/978-3-319-50478-0_18</a> <a target="_blank" rel="external noopener" href="https://fatcat.wiki/release/oqz2645nivco3m42ijdz7sdpye">fatcat:oqz2645nivco3m42ijdz7sdpye</a> </span>
<a target="_blank" rel="noopener" href="https://web.archive.org/web/20190427114559/http://openlib.tugraz.at/download.php?id=5a3cbd4768904&amp;location=browse" title="fulltext PDF download" data-goatcounter-click="serp-fulltext" data-goatcounter-title="serp-fulltext"> <button class="ui simple right pointing dropdown compact black labeled icon button serp-button"> <i class="icon ia-icon"></i> Web Archive [PDF] <div class="menu fulltext-thumbnail"> <img src="https://blobs.fatcat.wiki/thumbnail/pdf/a5/b4/a5b4b34eab08f1995eecbd5f61dee7d65593529b.180px.jpg" alt="fulltext thumbnail" loading="lazy"> </div> </button> </a> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.1007/978-3-319-50478-0_18"> <button class="ui left aligned compact blue labeled icon button serp-button"> <i class="external alternate icon"></i> springer.com </button> </a>

Current State of Non-wearable Sensor Technologies for Monitoring Activity Patterns to Detect Symptoms of Mild Cognitive Impairment to Alzheimer's Disease

Rajaram Narasimhan, Muthukumaran G., Charles McGlade, Francesco Panza
<span title="2021-02-10">2021</span> <i title="Hindawi Limited"> <a target="_blank" rel="noopener" href="https://fatcat.wiki/container/uh6eelbh3jb6hg6jmqrtewaadi" style="color: black;">International Journal of Alzheimer&#39;s Disease</a> </i> &nbsp;
activity patterns, and machine learning techniques to create the prediction models.  ...  (2) How are the machine learning methods being employed in analyzing activity data in this early detection approach?  ...  The second aim of this review is to present the current state-of-the-art on machine learning methods in predicting cognitive decline/MCI using non-wearable sensor data.  ... 
<span class="external-identifiers"> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.1155/2021/2679398">doi:10.1155/2021/2679398</a> <a target="_blank" rel="external noopener" href="https://www.ncbi.nlm.nih.gov/pubmed/33628484">pmid:33628484</a> <a target="_blank" rel="external noopener" href="https://pubmed.ncbi.nlm.nih.gov/PMC7889365/">pmcid:PMC7889365</a> <a target="_blank" rel="external noopener" href="https://fatcat.wiki/release/wrfbr62qbzhslfki7hocyihi4a">fatcat:wrfbr62qbzhslfki7hocyihi4a</a> </span>
<a target="_blank" rel="noopener" href="https://web.archive.org/web/20210219175128/https://downloads.hindawi.com/journals/ijad/2021/2679398.pdf" title="fulltext PDF download" data-goatcounter-click="serp-fulltext" data-goatcounter-title="serp-fulltext"> <button class="ui simple right pointing dropdown compact black labeled icon button serp-button"> <i class="icon ia-icon"></i> Web Archive [PDF] <div class="menu fulltext-thumbnail"> <img src="https://blobs.fatcat.wiki/thumbnail/pdf/99/c5/99c5b3fbb5eb57a59acbcb9c71a97d35deffc5dc.180px.jpg" alt="fulltext thumbnail" loading="lazy"> </div> </button> </a> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.1155/2021/2679398"> <button class="ui left aligned compact blue labeled icon button serp-button"> <i class="unlock alternate icon" style="background-color: #fb971f;"></i> hindawi.com </button> </a> <a target="_blank" rel="external noopener" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7889365" title="pubmed link"> <button class="ui compact blue labeled icon button serp-button"> <i class="file alternate outline icon"></i> pubmed.gov </button> </a>

Learning Orthographic Structure With Sequential Generative Neural Networks

Alberto Testolin, Ivilin Stoianov, Alessandro Sperduti, Marco Zorzi
<span title="2015-06-14">2015</span> <i title="Wiley"> <a target="_blank" rel="noopener" href="https://fatcat.wiki/container/sjomsvi4zngnnh4gx5bz2onwye" style="color: black;">Cognitive Science</a> </i> &nbsp;
We conclude that sequential RBMs and stochastic simple recurrent networks are promising candidates for modeling cognition in the temporal domain.  ...  Learning the structure of event sequences is a ubiquitous problem in cognition and particularly in language.  ...  Acknowledgments This study was supported by the European Research Council (grant no. 210922 to M.Z.). I.  ... 
<span class="external-identifiers"> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.1111/cogs.12258">doi:10.1111/cogs.12258</a> <a target="_blank" rel="external noopener" href="https://www.ncbi.nlm.nih.gov/pubmed/26073971">pmid:26073971</a> <a target="_blank" rel="external noopener" href="https://fatcat.wiki/release/k47jad5555ewzbwopstezdozi4">fatcat:k47jad5555ewzbwopstezdozi4</a> </span>
<a target="_blank" rel="noopener" href="https://web.archive.org/web/20170706015405/http://ccnl.psy.unipd.it/publications/publications_folder/learning-orthographic-structure-with-generative-neural-networks/at_download/file/" title="fulltext PDF download" data-goatcounter-click="serp-fulltext" data-goatcounter-title="serp-fulltext"> <button class="ui simple right pointing dropdown compact black labeled icon button serp-button"> <i class="icon ia-icon"></i> Web Archive [PDF] <div class="menu fulltext-thumbnail"> <img src="https://blobs.fatcat.wiki/thumbnail/pdf/69/ae/69aeddf0bc82c628da0a103dc5c445fd3f0c3688.180px.jpg" alt="fulltext thumbnail" loading="lazy"> </div> </button> </a> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.1111/cogs.12258"> <button class="ui left aligned compact blue labeled icon button serp-button"> <i class="external alternate icon"></i> Publisher / doi.org </button> </a>

Ideal algorithms in healthcare: Explainable, dynamic, precise, autonomous, fair, and reproducible

Tyler J. Loftus, Patrick J. Tighe, Tezcan Ozrazgat-Baslanti, John P. Davis, Matthew M. Ruppert, Yuanfang Ren, Benjamin Shickel, Rishikesan Kamaleswaran, William R. Hogan, J. Randall Moorman, Gilbert R. Upchurch, Parisa Rashidi (+2 others)
<span title="2022-01-18">2022</span> <i title="Public Library of Science (PLoS)"> <a target="_blank" rel="noopener" href="https://fatcat.wiki/container/ijwgep2m45canj4ytphdwkhmbm" style="color: black;">PLOS Digital Health</a> </i> &nbsp;
and clinical events), precise (use high-resolution, multimodal data and aptly complex architecture), autonomous (learn with minimal supervision and execute without human input), fair (evaluate and mitigate  ...  We propose a framework for ideal algorithms, including 6 desiderata: explainable (convey the relative importance of features in determining outputs), dynamic (capture temporal changes in physiologic signals  ...  This method was used to evaluate racial bias in an algorithm that predicts healthcare needs [83] .  ... 
<span class="external-identifiers"> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.1371/journal.pdig.0000006">doi:10.1371/journal.pdig.0000006</a> <a target="_blank" rel="external noopener" href="https://fatcat.wiki/release/yyldnctehrbohhtyr5hqxhymua">fatcat:yyldnctehrbohhtyr5hqxhymua</a> </span>
<a target="_blank" rel="noopener" href="https://web.archive.org/web/20220131064008/https://journals.plos.org/digitalhealth/article/file?id=10.1371/journal.pdig.0000006&amp;type=printable" title="fulltext PDF download" data-goatcounter-click="serp-fulltext" data-goatcounter-title="serp-fulltext"> <button class="ui simple right pointing dropdown compact black labeled icon button serp-button"> <i class="icon ia-icon"></i> Web Archive [PDF] <div class="menu fulltext-thumbnail"> <img src="https://blobs.fatcat.wiki/thumbnail/pdf/78/fa/78fa2f673241cb132432113bbfe08328fd0cb4dc.180px.jpg" alt="fulltext thumbnail" loading="lazy"> </div> </button> </a> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.1371/journal.pdig.0000006"> <button class="ui left aligned compact blue labeled icon button serp-button"> <i class="unlock alternate icon" style="background-color: #fb971f;"></i> plos.org </button> </a>

A Review of Machine Learning Models for Predicting Autism Spectrum Disorder

Kanchanamala P, G.Leela Sagar
<span title="2019-02-28">2019</span> <i title="BioAxis DNA Research Centre"> <a target="_blank" rel="noopener" href="https://fatcat.wiki/container/grcyvowbjbbnfdmv2azpa6ltf4" style="color: black;">Helix</a> </i> &nbsp;
This paper explores the machine learning models built using structured clinical patient data for predicting the ASD subjects.  ...  Predictive models can be developed to determine if the new patients are developing with ASD using historical patient data.  ...  Methodology We reviewed the literature related to the machine learning models focusing on the prediction of Autism Spectrum Disorder.  ... 
<span class="external-identifiers"> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.29042/2019-4797-4801">doi:10.29042/2019-4797-4801</a> <a target="_blank" rel="external noopener" href="https://fatcat.wiki/release/3qyltbuuqnamjmbbx5ywtbozpi">fatcat:3qyltbuuqnamjmbbx5ywtbozpi</a> </span>
<a target="_blank" rel="noopener" href="https://web.archive.org/web/20190429072149/http://helix.dnares.in/wp-content/uploads/2019/02/4797-4801.pdf" title="fulltext PDF download" data-goatcounter-click="serp-fulltext" data-goatcounter-title="serp-fulltext"> <button class="ui simple right pointing dropdown compact black labeled icon button serp-button"> <i class="icon ia-icon"></i> Web Archive [PDF] <div class="menu fulltext-thumbnail"> <img src="https://blobs.fatcat.wiki/thumbnail/pdf/af/c0/afc06c3265ffc1e0545a9e6cdda915f5eec5d9fa.180px.jpg" alt="fulltext thumbnail" loading="lazy"> </div> </button> </a> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.29042/2019-4797-4801"> <button class="ui left aligned compact blue labeled icon button serp-button"> <i class="external alternate icon"></i> Publisher / doi.org </button> </a>

Multivariate pattern analysis of brain structure predicts functional outcome after auditory-based cognitive training interventions [article]

Lana Kambeitz-Ilankovic, Sophia Vinogradov, Julian Wenzel, Melissa Fisher, Shalaila Haas, Linda Betz, Nora Penzel, Srikantan Nagarajan, Nikolaos Koutsouleris, Karuna Subramaniam
<span title="2020-09-08">2020</span> <i title="Cold Spring Harbor Laboratory"> bioRxiv </i> &nbsp; <span class="release-stage" >pre-print</span>
Methods: We employed whole-brain multivariate pattern analysis (MVPA) with support vector machine (SVM) modeling to identify grey matter (GM) patterns that predicted higher vs. lower functioning after  ...  Here, we evaluate the sensitivity of brain structural features to predict functional response to auditory-based cognitive training (ABCT) at a single subject level.  ...  Karuna Subramaniam, as well as an NIMH R01 grant (R01MH82818) to Sophia Vinogradov.  ... 
<span class="external-identifiers"> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.1101/2020.09.06.283481">doi:10.1101/2020.09.06.283481</a> <a target="_blank" rel="external noopener" href="https://fatcat.wiki/release/q3kk52yj4rdfxdjs67emhkwhii">fatcat:q3kk52yj4rdfxdjs67emhkwhii</a> </span>
<a target="_blank" rel="noopener" href="https://web.archive.org/web/20201212070646/https://www.biorxiv.org/content/biorxiv/early/2020/09/08/2020.09.06.283481.full.pdf" title="fulltext PDF download" data-goatcounter-click="serp-fulltext" data-goatcounter-title="serp-fulltext"> <button class="ui simple right pointing dropdown compact black labeled icon button serp-button"> <i class="icon ia-icon"></i> Web Archive [PDF] <div class="menu fulltext-thumbnail"> <img src="https://blobs.fatcat.wiki/thumbnail/pdf/48/15/48154e761fcb8cae270b2b046d61454a5ae10f82.180px.jpg" alt="fulltext thumbnail" loading="lazy"> </div> </button> </a> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.1101/2020.09.06.283481"> <button class="ui left aligned compact blue labeled icon button serp-button"> <i class="external alternate icon"></i> biorxiv.org </button> </a>

Common component classification: What can we learn from machine learning?

Ariana Anderson, Jennifer S. Labus, Eduardo P. Vianna, Emeran A. Mayer, Mark S. Cohen
<span title="">2011</span> <i title="Elsevier BV"> <a target="_blank" rel="noopener" href="https://fatcat.wiki/container/sa477uo7lveh7hchpikpixop5u" style="color: black;">NeuroImage</a> </i> &nbsp;
Introduction Machine learning classification applied to fMRI data have shown strong potential to diagnose cognitive disorders and identify behavioral states (Fan et al. (2006) Zhang and Samaras (2005  ...  For Model E and Model F, components were extracted across both runs simultaneously to evaluate how components in one session predicted behavior in another.  ... 
<span class="external-identifiers"> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.1016/j.neuroimage.2010.05.065">doi:10.1016/j.neuroimage.2010.05.065</a> <a target="_blank" rel="external noopener" href="https://www.ncbi.nlm.nih.gov/pubmed/20599621">pmid:20599621</a> <a target="_blank" rel="external noopener" href="https://pubmed.ncbi.nlm.nih.gov/PMC2966513/">pmcid:PMC2966513</a> <a target="_blank" rel="external noopener" href="https://fatcat.wiki/release/hljtlnuhfbfl3eiqnt6cotlifa">fatcat:hljtlnuhfbfl3eiqnt6cotlifa</a> </span>
<a target="_blank" rel="noopener" href="https://web.archive.org/web/20191123021336/http://europepmc.org/backend/ptpmcrender.fcgi?accid=PMC2966513&amp;blobtype=pdf" title="fulltext PDF download" data-goatcounter-click="serp-fulltext" data-goatcounter-title="serp-fulltext"> <button class="ui simple right pointing dropdown compact black labeled icon button serp-button"> <i class="icon ia-icon"></i> Web Archive [PDF] <div class="menu fulltext-thumbnail"> <img src="https://blobs.fatcat.wiki/thumbnail/pdf/17/00/170000583523c6d781d86cd89ad3aad4cb91c5e3.180px.jpg" alt="fulltext thumbnail" loading="lazy"> </div> </button> </a> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.1016/j.neuroimage.2010.05.065"> <button class="ui left aligned compact blue labeled icon button serp-button"> <i class="unlock alternate icon" style="background-color: #fb971f;"></i> elsevier.com </button> </a> <a target="_blank" rel="external noopener" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2966513" title="pubmed link"> <button class="ui compact blue labeled icon button serp-button"> <i class="file alternate outline icon"></i> pubmed.gov </button> </a>
&laquo; Previous Showing results 1 &mdash; 15 out of 16,875 results