Hybrid Scheme of Kinematic Analysis and Lagrangian Koopman Operator Analysis for Short-term Precipitation Forecasting
[article]
Shitao Zheng, Takashi Miyamoto, Koyuru Iwanami, Shingo Shimizu, Ryohei Kato
<span title="2020-06-03">2020</span>
<i >
arXiv
</i>
<span class="release-stage" >pre-print</span>
With the accumulation of meteorological big data, data-driven models for short-term precipitation forecasting have shown increasing promise. ...
The advection currents are estimated by kinematic analysis, and the changes in physical quantities are estimated by Koopman operator analysis. ...
These results occurred because the advected precipitation area was expressed with a spatially fixed mode in fugure 5, whereas the results in Figure 6 , where mode decomposition was applied to data whose ...
<span class="external-identifiers">
<a target="_blank" rel="external noopener" href="https://arxiv.org/abs/2006.02064v1">arXiv:2006.02064v1</a>
<a target="_blank" rel="external noopener" href="https://fatcat.wiki/release/gu2a35keq5gknogc3ehssxtyd4">fatcat:gu2a35keq5gknogc3ehssxtyd4</a>
</span>
<a target="_blank" rel="noopener" href="https://web.archive.org/web/20200910174949/https://arxiv.org/pdf/2006.02064v1.pdf" title="fulltext PDF download" data-goatcounter-click="serp-fulltext" data-goatcounter-title="serp-fulltext">
<button class="ui simple right pointing dropdown compact black labeled icon button serp-button">
<i class="icon ia-icon"></i>
Web Archive
[PDF]
<div class="menu fulltext-thumbnail">
<img src="https://blobs.fatcat.wiki/thumbnail/pdf/03/ef/03ef539e211567edc3e04b8e8163ba276db141d8.180px.jpg" alt="fulltext thumbnail" loading="lazy">
</div>
</button>
</a>
<a target="_blank" rel="external noopener" href="https://arxiv.org/abs/2006.02064v1" title="arxiv.org access">
<button class="ui compact blue labeled icon button serp-button">
<i class="file alternate outline icon"></i>
arxiv.org
</button>
</a>