Filters








82 Hits in 5.6 sec

The p-median problem in a changing network: the case of Barcelona

Daniel Serra, Vladimir Marianov
<span title="">1998</span> <i title="Elsevier BV"> <a target="_blank" rel="noopener" href="https://fatcat.wiki/container/son5swhrt5ah7jsti7wg6vpfei" style="color: black;">Location Science</a> </i> &nbsp;
This paper presents a discrete location model formulation to address this P-Median problem under uncertainty. The model is applied to the location of re stations in Barcelona  ...  In this paper a p-median-like model is formulated to address the issue of locating new facilities when there is uncertainty.  ...  The mathematical formulation of the model using the MINMAX Objective, based on the P-median Problem, is as follows: The MINMAX P-median Problem minM (1) s:t: X i2I X j2J a ik d k ij W k x k ij M k 2  ... 
<span class="external-identifiers"> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.1016/s0966-8349(98)00049-7">doi:10.1016/s0966-8349(98)00049-7</a> <a target="_blank" rel="external noopener" href="https://fatcat.wiki/release/vasbj74oyrdrzct2fwmdjtfo7q">fatcat:vasbj74oyrdrzct2fwmdjtfo7q</a> </span>
<a target="_blank" rel="noopener" href="https://web.archive.org/web/20050113201718/http://www.econ.upf.es:80/docs/papers/downloads/180.pdf" title="fulltext PDF download" data-goatcounter-click="serp-fulltext" data-goatcounter-title="serp-fulltext"> <button class="ui simple right pointing dropdown compact black labeled icon button serp-button"> <i class="icon ia-icon"></i> Web Archive [PDF] <div class="menu fulltext-thumbnail"> <img src="https://blobs.fatcat.wiki/thumbnail/pdf/d4/a9/d4a9d6dcb9bd406b3163ed5d14da326168254fce.180px.jpg" alt="fulltext thumbnail" loading="lazy"> </div> </button> </a> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.1016/s0966-8349(98)00049-7"> <button class="ui left aligned compact blue labeled icon button serp-button"> <i class="external alternate icon"></i> elsevier.com </button> </a>

Facility location problems with uncertainty on the plane

Igor Averbakh, Sergei Bereg
<span title="">2005</span> <i title="Elsevier BV"> <a target="_blank" rel="noopener" href="https://fatcat.wiki/container/s6sw62lf6zcxrghfhvjqhycu5y" style="color: black;">Discrete Optimization</a> </i> &nbsp;
We present an O(n 2 log 2 n) algorithm for the interval data minmax regret rectilinear 1-median problem and an O(n log n) algorithm for the interval data minmax regret rectilinear weighted 1-center problem  ...  We discuss possibilities of solving approximately the minmax regret Euclidean 1-median problem, and present an O(n 2 2 (n) log 2 n) algorithm for solving the minmax regret Euclidean weighted 1-center problem  ...  We presented an O(n 2 log 2 n) algorithm for the minmax regret rectilinear 1-median problem and an O(n log n) algorithm for the minmax regret rectilinear weighted 1-center problem.  ... 
<span class="external-identifiers"> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.1016/j.disopt.2004.12.001">doi:10.1016/j.disopt.2004.12.001</a> <a target="_blank" rel="external noopener" href="https://fatcat.wiki/release/2mqgwwthpjgirif5d76kasuxgi">fatcat:2mqgwwthpjgirif5d76kasuxgi</a> </span>
<a target="_blank" rel="noopener" href="https://web.archive.org/web/20190416050328/https://core.ac.uk/download/pdf/82660176.pdf" title="fulltext PDF download" data-goatcounter-click="serp-fulltext" data-goatcounter-title="serp-fulltext"> <button class="ui simple right pointing dropdown compact black labeled icon button serp-button"> <i class="icon ia-icon"></i> Web Archive [PDF] <div class="menu fulltext-thumbnail"> <img src="https://blobs.fatcat.wiki/thumbnail/pdf/fa/29/fa2982071d26155d727f5ef576a8df8e9c7a1ebb.180px.jpg" alt="fulltext thumbnail" loading="lazy"> </div> </button> </a> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.1016/j.disopt.2004.12.001"> <button class="ui left aligned compact blue labeled icon button serp-button"> <i class="external alternate icon"></i> elsevier.com </button> </a>

Minmax-Regret k-Sink Location on a Dynamic Tree Network with Uniform Capacities [article]

Mordecai J. Golin, Sai Sandeep
<span title="2018-06-11">2018</span> <i > arXiv </i> &nbsp; <span class="release-stage" >pre-print</span>
Prior to this work, polynomial time solutions to the Minmax-Regret k-Sink Location on Dynamic Tree Networks with uniform capacities were only known for k=1.  ...  Similarly, the Minmax-Regret k-center problem on trees is polynomial solvable in n and k.  ...  This is known as the minmax-regret problem. minmax-regret optimization has been extensively studied for the k-median [11, 8, 44] and k-center problems [4, 36, 9, 44] ([10] is a recent example) and  ... 
<span class="external-identifiers"> <a target="_blank" rel="external noopener" href="https://arxiv.org/abs/1806.03814v1">arXiv:1806.03814v1</a> <a target="_blank" rel="external noopener" href="https://fatcat.wiki/release/5l3kxbwhsreenllvu2463trbzu">fatcat:5l3kxbwhsreenllvu2463trbzu</a> </span>
<a target="_blank" rel="noopener" href="https://web.archive.org/web/20200828194447/https://arxiv.org/pdf/1806.03814v1.pdf" title="fulltext PDF download" data-goatcounter-click="serp-fulltext" data-goatcounter-title="serp-fulltext"> <button class="ui simple right pointing dropdown compact black labeled icon button serp-button"> <i class="icon ia-icon"></i> Web Archive [PDF] <div class="menu fulltext-thumbnail"> <img src="https://blobs.fatcat.wiki/thumbnail/pdf/c4/81/c48109732716e75cf7630165834f6df8705304d7.180px.jpg" alt="fulltext thumbnail" loading="lazy"> </div> </button> </a> <a target="_blank" rel="external noopener" href="https://arxiv.org/abs/1806.03814v1" title="arxiv.org access"> <button class="ui compact blue labeled icon button serp-button"> <i class="file alternate outline icon"></i> arxiv.org </button> </a>

Pseudo-centroid clustering

Fred Glover
<span title="2016-10-13">2016</span> <i title="Springer Nature"> <a target="_blank" rel="noopener" href="https://fatcat.wiki/container/e5brmbb4nne2bb6o5whxervgii" style="color: black;">Soft Computing - A Fusion of Foundations, Methodologies and Applications</a> </i> &nbsp;
We also introduce a regret-threshold PC algorithm that modifies the K-PC algorithm together with an associated diversification method and a new criterion for evaluating the quality of a collection of clusters  ...  rise to a K-MinMax algorithm and a K-MinSum algorithm which are analogous to a K-Means algorithm.  ...  algorithm can potentially be improved as follows: Accelerated update for Step 1.  ... 
<span class="external-identifiers"> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.1007/s00500-016-2369-6">doi:10.1007/s00500-016-2369-6</a> <a target="_blank" rel="external noopener" href="https://fatcat.wiki/release/wbgxarr6ljdj7hdsuazdaw6wxi">fatcat:wbgxarr6ljdj7hdsuazdaw6wxi</a> </span>
<a target="_blank" rel="noopener" href="https://web.archive.org/web/20190304063920/http://pdfs.semanticscholar.org/c26d/e4a499b6e2f22e619b04f0e157d8a6283fb0.pdf" title="fulltext PDF download" data-goatcounter-click="serp-fulltext" data-goatcounter-title="serp-fulltext"> <button class="ui simple right pointing dropdown compact black labeled icon button serp-button"> <i class="icon ia-icon"></i> Web Archive [PDF] <div class="menu fulltext-thumbnail"> <img src="https://blobs.fatcat.wiki/thumbnail/pdf/c2/6d/c26de4a499b6e2f22e619b04f0e157d8a6283fb0.180px.jpg" alt="fulltext thumbnail" loading="lazy"> </div> </button> </a> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.1007/s00500-016-2369-6"> <button class="ui left aligned compact blue labeled icon button serp-button"> <i class="external alternate icon"></i> springer.com </button> </a>

Minmax regret combinatorial optimization problems: an Algorithmic Perspective

Alfredo Candia-Véjar, Eduardo Álvarez-Miranda, Nelson Maculan
<span title="">2011</span> <i title="EDP Sciences"> <a target="_blank" rel="noopener" href="https://fatcat.wiki/container/inei2pvlvnaw7lwfzvf7meb67e" style="color: black;">Reserche operationelle</a> </i> &nbsp;
In the minmax regret (MMR) approach, the set of all possible scenarios is described deterministically, and the search is for a solution that performs reasonably well for all scenarios, i.e., that has the  ...  In this paper we discuss the computational complexity of some classic combinatorial optimization problems using MMR approach, analyze the design of several algorithms for these problems, suggest the study  ...  for the 1-median problem and an O (n log n) algorithm for the weighted 1-center problem.  ... 
<span class="external-identifiers"> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.1051/ro/2011111">doi:10.1051/ro/2011111</a> <a target="_blank" rel="external noopener" href="https://fatcat.wiki/release/bp3m2pn55rcy5fmn2pjojfpesq">fatcat:bp3m2pn55rcy5fmn2pjojfpesq</a> </span>
<a target="_blank" rel="noopener" href="https://web.archive.org/web/20170922000905/http://dspace.utalca.cl/bitstream/1950/8888/1/S0399055911001119a.pdf" title="fulltext PDF download" data-goatcounter-click="serp-fulltext" data-goatcounter-title="serp-fulltext"> <button class="ui simple right pointing dropdown compact black labeled icon button serp-button"> <i class="icon ia-icon"></i> Web Archive [PDF] <div class="menu fulltext-thumbnail"> <img src="https://blobs.fatcat.wiki/thumbnail/pdf/79/05/7905cfd92aa02b737c275b65d67e5b604e8b24ba.180px.jpg" alt="fulltext thumbnail" loading="lazy"> </div> </button> </a> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.1051/ro/2011111"> <button class="ui left aligned compact blue labeled icon button serp-button"> <i class="unlock alternate icon" style="background-color: #fb971f;"></i> Publisher / doi.org </button> </a>

Page 1411 of Mathematical Reviews Vol. , Issue 99b [page]

<span title="">1991</span> <i title="American Mathematical Society"> <a target="_blank" rel="noopener" href="https://archive.org/details/pub_mathematical-reviews" style="color: black;">Mathematical Reviews </a> </i> &nbsp;
, Bintong (1-WAS-MG; Pullman, WA); Lin, Chin-Shien Minmax-regret robust |-median location on a tree.  ...  A polynomial algorithm is given for finding the minmax-regret l-median locations of a tree where the uncertainty of both edge lengths and node weights is specified by intervals. H. T.  ... 
<span class="external-identifiers"> </span>
<a target="_blank" rel="noopener" href="https://archive.org/details/sim_mathematical-reviews_1991-02_99b/page/1411" title="read fulltext microfilm" data-goatcounter-click="serp-fulltext" data-goatcounter-title="serp-fulltext"> <button class="ui simple right pointing dropdown compact black labeled icon button serp-button"> <i class="icon ia-icon"></i> Archive [Microfilm] <div class="menu fulltext-thumbnail"> <img src="https://archive.org/serve/sim_mathematical-reviews_1991-02_99b/__ia_thumb.jpg" alt="fulltext thumbnail" loading="lazy"> </div> </button> </a>

An O() version of the Averbakh–Berman algorithm for the robust median of a tree

Gerth Stølting Brodal, Loukas Georgiadis, Irit Katriel
<span title="">2008</span> <i title="Elsevier BV"> <a target="_blank" rel="noopener" href="https://fatcat.wiki/container/z7xgofryqjgkxjlwzlky45v4li" style="color: black;">Operations Research Letters</a> </i> &nbsp;
We show that the minmax regret median of a tree can be found in O(n log n) time.  ...  This is obtained by a modification of Averbakh and Berman's O(n log 2 n)-time algorithm: We design a dynamic solution to their bottleneck subproblem of finding the middle of every root-leaf path in a tree  ...  Acknowledgements We thank Kristoffer Arnsfelt Hansen for helpful discussions. This work was done while Loukas Georgiadis and Irit Katriel were at the University of Aarhus. Gerth  ... 
<span class="external-identifiers"> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.1016/j.orl.2007.02.012">doi:10.1016/j.orl.2007.02.012</a> <a target="_blank" rel="external noopener" href="https://fatcat.wiki/release/nulblf52ivh45nk5hzkg5viisy">fatcat:nulblf52ivh45nk5hzkg5viisy</a> </span>
<a target="_blank" rel="noopener" href="https://web.archive.org/web/20170809081810/http://www.cs.au.dk/~gerth/papers/orl08.pdf" title="fulltext PDF download" data-goatcounter-click="serp-fulltext" data-goatcounter-title="serp-fulltext"> <button class="ui simple right pointing dropdown compact black labeled icon button serp-button"> <i class="icon ia-icon"></i> Web Archive [PDF] <div class="menu fulltext-thumbnail"> <img src="https://blobs.fatcat.wiki/thumbnail/pdf/95/23/95239f7d08b3ab0949df0f26fb2e1d24e1bb556a.180px.jpg" alt="fulltext thumbnail" loading="lazy"> </div> </button> </a> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.1016/j.orl.2007.02.012"> <button class="ui left aligned compact blue labeled icon button serp-button"> <i class="external alternate icon"></i> elsevier.com </button> </a>

Algorithms and Learning for Fair Portfolio Design [article]

Emily Diana, Travis Dick, Hadi Elzayn, Michael Kearns, Aaron Roth, Zachary Schutzman, Saeed Sharifi-Malvajerdi, Juba Ziani
<span title="2020-06-12">2020</span> <i > arXiv </i> &nbsp; <span class="release-stage" >pre-print</span>
We consider a variation on the classical finance problem of optimal portfolio design.  ...  Our main results are algorithms for optimal and near-optimal portfolio design for both social welfare and fairness objectives, both with and without assumptions on the underlying group structure.  ...  We can convert any algorithm for the decision problem into one that approximately solves the minmax regret problem by performing binary search over the target regret κ to find the minimum feasible value  ... 
<span class="external-identifiers"> <a target="_blank" rel="external noopener" href="https://arxiv.org/abs/2006.07281v1">arXiv:2006.07281v1</a> <a target="_blank" rel="external noopener" href="https://fatcat.wiki/release/fhr7srflsjfubm4jw5uee4fijy">fatcat:fhr7srflsjfubm4jw5uee4fijy</a> </span>
<a target="_blank" rel="noopener" href="https://web.archive.org/web/20200623113145/https://arxiv.org/pdf/2006.07281v1.pdf" title="fulltext PDF download" data-goatcounter-click="serp-fulltext" data-goatcounter-title="serp-fulltext"> <button class="ui simple right pointing dropdown compact black labeled icon button serp-button"> <i class="icon ia-icon"></i> Web Archive [PDF] </button> </a> <a target="_blank" rel="external noopener" href="https://arxiv.org/abs/2006.07281v1" title="arxiv.org access"> <button class="ui compact blue labeled icon button serp-button"> <i class="file alternate outline icon"></i> arxiv.org </button> </a>

Combinatorial two-stage minmax regret problems under interval uncertainty

Marc Goerigk, Adam Kasperski, Paweł Zieliński
<span title="2020-11-24">2020</span> <i title="Springer Science and Business Media LLC"> <a target="_blank" rel="noopener" href="https://fatcat.wiki/container/kov3rwzipzf2dmxyohqwfpxrsm" style="color: black;">Annals of Operations Research</a> </i> &nbsp;
In order to choose a solution, the minmax regret criterion is used.  ...  Some general properties of the problem are established and results for two particular problems, namely the shortest path and the selection problem, are shown.  ...  Acknowledgements The second and third author were supported by the National Science Centre, Poland, Grant 2017/25/B/ST6/00486.  ... 
<span class="external-identifiers"> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.1007/s10479-020-03863-7">doi:10.1007/s10479-020-03863-7</a> <a target="_blank" rel="external noopener" href="https://fatcat.wiki/release/m7vunruignbdtpqmosaug6c3ay">fatcat:m7vunruignbdtpqmosaug6c3ay</a> </span>
<a target="_blank" rel="noopener" href="https://web.archive.org/web/20210429125309/https://link.springer.com/content/pdf/10.1007/s10479-020-03863-7.pdf?error=cookies_not_supported&amp;code=1d2263bf-440e-423b-a918-f89234a6dce3" title="fulltext PDF download" data-goatcounter-click="serp-fulltext" data-goatcounter-title="serp-fulltext"> <button class="ui simple right pointing dropdown compact black labeled icon button serp-button"> <i class="icon ia-icon"></i> Web Archive [PDF] <div class="menu fulltext-thumbnail"> <img src="https://blobs.fatcat.wiki/thumbnail/pdf/26/ce/26ce4932cd0a26783e853ce626d50e5b80968f71.180px.jpg" alt="fulltext thumbnail" loading="lazy"> </div> </button> </a> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.1007/s10479-020-03863-7"> <button class="ui left aligned compact blue labeled icon button serp-button"> <i class="unlock alternate icon" style="background-color: #fb971f;"></i> springer.com </button> </a>

An O(n^2 log^2 n) Time Algorithm for Minmax Regret Minsum Sink on Path Networks

Binay Bhattacharya, Yuya Higashikawa, Tsunehiko Kameda, Naoki Katoh, Michael Wagner
<span title="2018-11-27">2018</span> <i > <a target="_blank" rel="noopener" href="https://fatcat.wiki/container/6u44dxxc6ffsdc6pb66slxylg4" style="color: black;">International Symposium on Algorithms and Computation</a> </i> &nbsp;
Under this assumption, we compute a sink location that minimizes the maximum "regret." We present the first sub-cubic time algorithm in n to solve this problem, where n is the number of vertices.  ...  Although we cast our problem as evacuation, our result is accurate if the "evacuees" are fluid-like continuous material, but is a good approximation for discrete evacuees.  ...  Future research topics include efficiently solving the minmax regret problem for aggregate time sink for more general networks such as trees. No such polynomial time algorithm is known at present. .  ... 
<span class="external-identifiers"> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.4230/lipics.isaac.2018.14">doi:10.4230/lipics.isaac.2018.14</a> <a target="_blank" rel="external noopener" href="https://dblp.org/rec/conf/isaac/BhattacharyaHKK18.html">dblp:conf/isaac/BhattacharyaHKK18</a> <a target="_blank" rel="external noopener" href="https://fatcat.wiki/release/p6y7fskgerdo3bxpils6zc53u4">fatcat:p6y7fskgerdo3bxpils6zc53u4</a> </span>
<a target="_blank" rel="noopener" href="https://web.archive.org/web/20210123171606/https://drops.dagstuhl.de/opus/volltexte/2018/9962/pdf/LIPIcs-ISAAC-2018-14.pdf" title="fulltext PDF download" data-goatcounter-click="serp-fulltext" data-goatcounter-title="serp-fulltext"> <button class="ui simple right pointing dropdown compact black labeled icon button serp-button"> <i class="icon ia-icon"></i> Web Archive [PDF] <div class="menu fulltext-thumbnail"> <img src="https://blobs.fatcat.wiki/thumbnail/pdf/22/7d/227d64bce8922cfea817685688192353385c92bb.180px.jpg" alt="fulltext thumbnail" loading="lazy"> </div> </button> </a> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.4230/lipics.isaac.2018.14"> <button class="ui left aligned compact blue labeled icon button serp-button"> <i class="external alternate icon"></i> Publisher / doi.org </button> </a>

Page 5046 of Mathematical Reviews Vol. , Issue 2004f [page]

<span title="">2004</span> <i title="American Mathematical Society"> <a target="_blank" rel="noopener" href="https://archive.org/details/pub_mathematical-reviews" style="color: black;">Mathematical Reviews </a> </i> &nbsp;
Jan Riickmann (Cholula) 2004f:90151 90C35 90B80 Averbakh, Igor (3-TRNT2-MG; West Hill, ON); Berman, Oded (3-TRNT-SMG; Toronto, ON) An improved algorithm for the minmax regret median problem on a tree.  ...  The authors consider the 1-median problem with uncertain weights for nodes where, for each node, only an interval estimate of its weight is known.  ... 
<span class="external-identifiers"> </span>
<a target="_blank" rel="noopener" href="https://archive.org/details/sim_mathematical-reviews_2004-06_2004f/page/5046" title="read fulltext microfilm" data-goatcounter-click="serp-fulltext" data-goatcounter-title="serp-fulltext"> <button class="ui simple right pointing dropdown compact black labeled icon button serp-button"> <i class="icon ia-icon"></i> Archive [Microfilm] <div class="menu fulltext-thumbnail"> <img src="https://archive.org/serve/sim_mathematical-reviews_2004-06_2004f/__ia_thumb.jpg" alt="fulltext thumbnail" loading="lazy"> </div> </button> </a>

Dynamic Pricing Through Sampling Based Optimization

Ruben Lobel, Georgia Perakis
<span title="">2010</span> <i title="Elsevier BV"> <a target="_blank" rel="noopener" href="https://fatcat.wiki/container/tol7woxlqjeg5bmzadeg6qrg3e" style="color: black;">Social Science Research Network</a> </i> &nbsp;
The main contribution of this paper is the exploration of closed-loop pricing policies for different robust objectives, such as MaxMin, MinMax Regret and MaxMin Ratio.  ...  In this paper we develop an approach to dynamic pricing that combines ideas from data-driven and robust optimization to address the uncertain and dynamic aspects of the problem.  ...  Acknowledgments We are thankful for the multiple conversations and constructive comments of Gabriel Bitran, Marco Campi, Vivek Farias, Stephen Graves, David Morton, Joline Uichanco, Garrett van Ryzin and  ... 
<span class="external-identifiers"> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.2139/ssrn.1748426">doi:10.2139/ssrn.1748426</a> <a target="_blank" rel="external noopener" href="https://fatcat.wiki/release/vle6z6vfnrbtjowat6prfme7kq">fatcat:vle6z6vfnrbtjowat6prfme7kq</a> </span>
<a target="_blank" rel="noopener" href="https://web.archive.org/web/20170819020948/http://dspace.mit.edu/bitstream/handle/1721.1/88129/Perakis_Dynamic%20pricing.pdf?sequence=1" title="fulltext PDF download" data-goatcounter-click="serp-fulltext" data-goatcounter-title="serp-fulltext"> <button class="ui simple right pointing dropdown compact black labeled icon button serp-button"> <i class="icon ia-icon"></i> Web Archive [PDF] <div class="menu fulltext-thumbnail"> <img src="https://blobs.fatcat.wiki/thumbnail/pdf/b4/0e/b40eb1196f512f49a52cfb52fb031a8b13548b02.180px.jpg" alt="fulltext thumbnail" loading="lazy"> </div> </button> </a> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.2139/ssrn.1748426"> <button class="ui left aligned compact blue labeled icon button serp-button"> <i class="external alternate icon"></i> ssrn.com </button> </a>

A Polynomial Time Algorithm for Minimax-Regret Evacuation on a Dynamic Path [article]

Guru Prakash Arumugam, John Augustine, Mordecai J. Golin, Prashanth Srikanthan
<span title="2014-04-22">2014</span> <i > arXiv </i> &nbsp; <span class="release-stage" >pre-print</span>
The previously best known algorithms for the minmax regret version problem ran in time exponential in k.  ...  In this paper, we derive new prop- erties of solutions that yield the first polynomial time algorithms for solving the problem.  ...  [4] provides an O(n log 2 n) algorithm for the 1-sink minmax-regret problem on a uniform capacity tree.  ... 
<span class="external-identifiers"> <a target="_blank" rel="external noopener" href="https://arxiv.org/abs/1404.5448v1">arXiv:1404.5448v1</a> <a target="_blank" rel="external noopener" href="https://fatcat.wiki/release/7sdbmpgh75bufpalwjjl7ynw5i">fatcat:7sdbmpgh75bufpalwjjl7ynw5i</a> </span>
<a target="_blank" rel="noopener" href="https://web.archive.org/web/20200831173820/https://arxiv.org/pdf/1404.5448v1.pdf" title="fulltext PDF download" data-goatcounter-click="serp-fulltext" data-goatcounter-title="serp-fulltext"> <button class="ui simple right pointing dropdown compact black labeled icon button serp-button"> <i class="icon ia-icon"></i> Web Archive [PDF] <div class="menu fulltext-thumbnail"> <img src="https://blobs.fatcat.wiki/thumbnail/pdf/e8/1e/e81e8afea2dee3a5df395c48da266fceb4f4de4b.180px.jpg" alt="fulltext thumbnail" loading="lazy"> </div> </button> </a> <a target="_blank" rel="external noopener" href="https://arxiv.org/abs/1404.5448v1" title="arxiv.org access"> <button class="ui compact blue labeled icon button serp-button"> <i class="file alternate outline icon"></i> arxiv.org </button> </a>

Minmax Regret 1-Sink for Aggregate Evacuation Time on Path Networks [article]

Binay Bhattacharya, Yuya Higashikawa, Tsunehiko Kameda, Naoki Katoh
<span title="2018-06-03">2018</span> <i > arXiv </i> &nbsp; <span class="release-stage" >pre-print</span>
We present an O(n^2 n) time algorithm to solve this problem, improving upon the previously fastest O(n^3) time algorithm, where n is the number of vertices.  ...  Under this assumption, we compute the sink location that minimizes the maximum "regret."  ...  We presented an O(n 2 log n) time algorithm for finding the minmax regret aggregate time sink on dynamic path networks with uniform edge capacities, which improves upon the previously most efficient O(  ... 
<span class="external-identifiers"> <a target="_blank" rel="external noopener" href="https://arxiv.org/abs/1806.00814v1">arXiv:1806.00814v1</a> <a target="_blank" rel="external noopener" href="https://fatcat.wiki/release/dscjujbi6zaj7ngipbcfhslxjy">fatcat:dscjujbi6zaj7ngipbcfhslxjy</a> </span>
<a target="_blank" rel="noopener" href="https://web.archive.org/web/20200822153238/https://arxiv.org/pdf/1806.00814v1.pdf" title="fulltext PDF download" data-goatcounter-click="serp-fulltext" data-goatcounter-title="serp-fulltext"> <button class="ui simple right pointing dropdown compact black labeled icon button serp-button"> <i class="icon ia-icon"></i> Web Archive [PDF] <div class="menu fulltext-thumbnail"> <img src="https://blobs.fatcat.wiki/thumbnail/pdf/63/8c/638cc7a5aa663c1e803d8b860bd1e1dba86a4067.180px.jpg" alt="fulltext thumbnail" loading="lazy"> </div> </button> </a> <a target="_blank" rel="external noopener" href="https://arxiv.org/abs/1806.00814v1" title="arxiv.org access"> <button class="ui compact blue labeled icon button serp-button"> <i class="file alternate outline icon"></i> arxiv.org </button> </a>

Minmax Regret for sink location on paths with general capacities [article]

Mordecai Golin, Sai Sandeep
<span title="2020-01-21">2020</span> <i > arXiv </i> &nbsp; <span class="release-stage" >pre-print</span>
This paper develops a O(n^4 log n) time algorithm for the minmax regret 1-sink problem on paths with general (non-uniform) capacities.  ...  A large recent literature derives polynomial time algorithms for the minmax regret k-sink location problem on paths and trees under the simplifying condition that all edges have the same (uniform) capacity  ...  The 1-sink minmax regret problem on uniform capacity trees can be solved in O(n log n) time [19, 7] . [6] gives a O(n 2 ) algorithm for the 1-sink minmax regret problem on a uniform capacitycycle.  ... 
<span class="external-identifiers"> <a target="_blank" rel="external noopener" href="https://arxiv.org/abs/1912.12447v2">arXiv:1912.12447v2</a> <a target="_blank" rel="external noopener" href="https://fatcat.wiki/release/zvo6dijw55bblgomiuxsymb5n4">fatcat:zvo6dijw55bblgomiuxsymb5n4</a> </span>
<a target="_blank" rel="noopener" href="https://web.archive.org/web/20200321052005/https://arxiv.org/pdf/1912.12447v2.pdf" title="fulltext PDF download" data-goatcounter-click="serp-fulltext" data-goatcounter-title="serp-fulltext"> <button class="ui simple right pointing dropdown compact black labeled icon button serp-button"> <i class="icon ia-icon"></i> Web Archive [PDF] </button> </a> <a target="_blank" rel="external noopener" href="https://arxiv.org/abs/1912.12447v2" title="arxiv.org access"> <button class="ui compact blue labeled icon button serp-button"> <i class="file alternate outline icon"></i> arxiv.org </button> </a>
&laquo; Previous Showing results 1 &mdash; 15 out of 82 results