Deep Learning Based Text Classification: A Comprehensive Review
[article]
Shervin Minaee, Nal Kalchbrenner, Erik Cambria, Narjes Nikzad, Meysam Chenaghlu, Jianfeng Gao
<span title="2021-01-04">2021</span>
<i >
arXiv
</i>
<span class="release-stage" >pre-print</span>
Deep learning based models have surpassed classical machine learning based approaches in various text classification tasks, including sentiment analysis, news categorization, question answering, and natural ...
In this paper, we provide a comprehensive review of more than 150 deep learning based models for text classification developed in recent years, and discuss their technical contributions, similarities, ...
ACKNOWLEDGMENTS The authors would like to thank Richard Socher, Kristina Toutanova, and Brooke Cowan for reviewing this work, and providing very insightful comments. ...
<span class="external-identifiers">
<a target="_blank" rel="external noopener" href="https://arxiv.org/abs/2004.03705v3">arXiv:2004.03705v3</a>
<a target="_blank" rel="external noopener" href="https://fatcat.wiki/release/al5hstylsbhfpldvokuvlpomam">fatcat:al5hstylsbhfpldvokuvlpomam</a>
</span>
<a target="_blank" rel="noopener" href="https://web.archive.org/web/20200415221309/https://arxiv.org/pdf/2004.03705v1.pdf" title="fulltext PDF download [not primary version]" data-goatcounter-click="serp-fulltext" data-goatcounter-title="serp-fulltext">
<button class="ui simple right pointing dropdown compact black labeled icon button serp-button">
<i class="icon ia-icon"></i>
Web Archive
[PDF]
<span style="color: #f43e3e;">✱</span>
</button>
</a>
<a target="_blank" rel="external noopener" href="https://arxiv.org/abs/2004.03705v3" title="arxiv.org access">
<button class="ui compact blue labeled icon button serp-button">
<i class="file alternate outline icon"></i>
arxiv.org
</button>
</a>