Filters








2 Hits in 2.6 sec

Hrushovski's Encoding and ω-Categorical CSP Monsters

Pierre Gillibert, Julius Jonušas, Michael Kompatscher, Antoine Mottet, Michael Pinsker, Emanuela Merelli, Artur Czumaj, Anuj Dawar
2020 International Colloquium on Automata, Languages and Programming  
This method allows us to systematically generate ω-categorical templates whose CSPs are complete for a variety of complexity classes of arbitrarily high complexity, and ω-categorical templates that show  ...  We produce a class of ω-categorical structures with finite signature by applying a model-theoretic construction - a refinement of an encoding due to Hrushosvki - to ω-categorical structures in a possibly  ...  I C A L P 2 0 2 0 131:10 Hrushovski's Encoding and ω-Categorical CSP Monsters The following proposition states that the operator D indeed decodes E A.  ... 
doi:10.4230/lipics.icalp.2020.131 dblp:conf/icalp/GillibertJKMP20 fatcat:l7wkhxwupvghrgceqfd55y64tm

When symmetries are not enough: a hierarchy of hard Constraint Satisfaction Problems [article]

Pierre Gillibert, Julius Jonušas, Michael Kompatscher, Antoine Mottet, Michael Pinsker
2021 arXiv   pre-print
This method allows us to systematically generate ω-categorical templates whose CSPs are complete for a variety of complexity classes of arbitrarily high complexity, and ω-categorical templates that show  ...  We produce a class of ω-categorical structures with finite signature by applying a model-theoretic construction – a refinement of the Hrushosvki-encoding – to ω-categorical structures in a possibly infinite  ...  Then any tuple in R − → B B S δ,α must lie entirely within P − → 19, BKO + 17]. 1.4.3. ω-categorical CSP monsters.  ... 
arXiv:2002.07054v2 fatcat:7gjieagt2rdthb7imxs535e3a4