Filters








2,198 Hits in 1.4 sec

Biosensing with optical fiber gratings

Francesco Chiavaioli, Francesco Baldini, Sara Tombelli, Cosimo Trono, Ambra Giannetti
2017 Nanophotonics  
AbstractOptical fiber gratings (OFGs), especially long-period gratings (LPGs) and etched or tilted fiber Bragg gratings (FBGs), are playing an increasing role in the chemical and biochemical sensing based on the measurement of a surface refractive index (RI) change through a label-free configuration. In these devices, the electric field evanescent wave at the fiber/surrounding medium interface changes its optical properties (i.e. intensity and wavelength) as a result of the RI variation due to
more » ... he interaction between a biological recognition layer deposited over the fiber and the analyte under investigation. The use of OFG-based technology platforms takes the advantages of optical fiber peculiarities, which are hardly offered by the other sensing systems, such as compactness, lightness, high compatibility with optoelectronic devices (both sources and detectors), and multiplexing and remote measurement capability as the signal is spectrally modulated. During the last decade, the growing request in practical applications pushed the technology behind the OFG-based sensors over its limits by means of the deposition of thin film overlays, nanocoatings, and nanostructures, in general. Here, we review efforts toward utilizing these nanomaterials as coatings for high-performance and low-detection limit devices. Moreover, we review the recent development in OFG-based biosensing and identify some of the key challenges for practical applications. While high-performance metrics are starting to be achieved experimentally, there are still open questions pertaining to an effective and reliable detection of small molecules, possibly up to single molecule, sensing
doi:10.1515/nanoph-2016-0178 fatcat:67dn5ke7iradtjqxb5q7eaykxy

Long Period Grating-Based Fiber Coupling to WGM Microresonators

Francesco Chiavaioli, Dario Laneve, Daniele Farnesi, Mario Falconi, Gualtiero Nunzi Conti, Francesco Baldini, Francesco Prudenzano
2018 Micromachines  
A comprehensive model for designing robust all-in-fiber microresonator-based optical sensing setups is illustrated. The investigated all-in-fiber setups allow light to selectively excite high-Q whispering gallery modes (WGMs) into optical microresonators, thanks to a pair of identical long period gratings (LPGs) written in the same optical fiber. Microspheres and microbubbles are used as microresonators and evanescently side-coupled to a thick fiber taper, with a waist diameter of about 18 µm,
more » ... n between the two LPGs. The model is validated by comparing the simulated results with the experimental data. A good agreement between the simulated and experimental results is obtained. The model is general and by exploiting the refractive index and/or absorption characteristics at suitable wavelengths, the sensing of several substances or pollutants can be predicted.
doi:10.3390/mi9070366 pmid:30424299 pmcid:PMC6082267 fatcat:hd3si5czejfitenw74izn6bqfq

Front Matter: Volume 8774

Francesco Baldini, Jiri Homola, Robert A. Lieberman
2013 Optical Sensors 2013  
Publication of record for individual papers is online in the SPIE Digital Library. SPIEDigitalLibrary.org Paper Numbering: Proceedings of SPIE follow an e-First publication model, with papers published first online and then in print and on CD-ROM. Papers are published as they are submitted and meet publication criteria. A unique, consistent, permanent citation identifier (CID) number is assigned to each article at the time of the first publication. Utilization of CIDs allows articles to be
more » ... citable as soon as they are published online, and connects the same identifier to all online, print, and electronic versions of the publication. SPIE uses a six-digit CID article numbering system in which: The first four digits correspond to the SPIE volume number. The last two digits indicate publication order within the volume using a Base 36 numbering system employing both numerals and letters. These two-number sets start with 00, 01, 02, 03, 04, 05, 06, 07, 08, 09, 0A, 0B ... 0Z, followed by 10-1Z, 20-2Z, etc. The CID Number appears on each page of the manuscript. The complete citation is used on the first page, and an abbreviated version on subsequent pages. Numbers in the index correspond to the last two digits of the six-digit CID Number.
doi:10.1117/12.2030588 fatcat:tdua47a7trczjpxpq5g3utgldy

Front Matter: Volume 11772

Robert A. Lieberman, Francesco Baldini, Jiri Homola
2021 Optical Sensors 2021  
Baldini, Jiri Homola, Robert A.  ...  and label-free detection of C-reactive protein in serum by long period grating in double cladding fiber iii Proc. of SPIE Vol. 11772 1177201-3 s), "Title of Paper," in Optical Sensors 2021, edited by Francesco  ... 
doi:10.1117/12.2599008 fatcat:2qhsf7c57vazjothhj5422ltie

Front Matter: Volume 11028

Robert A. Lieberman, Francesco Baldini, Jiri Homola
2019 Optical Sensors 2019  
Publication of record for individual papers is online in the SPIE Digital Library. SPIEDigitalLibrary.org Paper Numbering: Proceedings of SPIE follow an e-First publication model. A unique citation identifier (CID) number is assigned to each article at the time of publication. Utilization of CIDs allows articles to be fully citable as soon as they are published online, and connects the same identifier to all online and print versions of the publication. SPIE uses a seven-digit CID article
more » ... ing system structured as follows:  The first five digits correspond to the SPIE volume number.  The last two digits indicate publication order within the volume using a Base 36 numbering system employing both numerals and letters. These two-number sets start with 00, 01, 02, 03, 04,
doi:10.1117/12.2535406 fatcat:ehn5k6c3ovbrtikolv73kecmie

Optical nanosensing in cells

Francesco Baldini
2013 Analytical and Bioanalytical Chemistry  
Francesco Baldini has been senior scientist at the Institute of Applied Physics of the National Council of Research, Italy, since 2001.  ...  Baldini (*) IFAC-CNR, Via Madonna del Piano 10, 50019 Sesto Fiorentino, Firenze, Italy e-mail: baldini@ifac.cnr.it  ... 
doi:10.1007/s00216-013-7091-y pmid:23760138 fatcat:way2cc5vffdphjobhd6fyzef5a

Optical sensing in medicine

Francesco Baldini
2008 Analytical and Bioanalytical Chemistry  
Francesco Baldini is a senior researcher at the Institute of Applied Physics of National Council of Research in Florence.  ... 
doi:10.1007/s00216-008-2553-3 pmid:19093102 fatcat:szr4ppkeajau5cld6si5nbdp3m

Spectral ghost imaging for ultrafast spectroscopy

Shir Rabi, Sara Meir, Raphi Dror, Hamootal Duadi, Francesco Baldini, Francesco Chiavaioli, Moti Fridman
2021 IEEE Photonics Journal  
We experimentally demonstrate ghost imaging in the frequency domain based on frequency speckle patterns as references. Our method is suitable for measuring the spectrum of ultrafast signals with high repetition rates. We study the reconstruction resolution as a function of the signal periodicity and found the maximal signal periodicity which can be reconstructed. We also study the reconstruction resolution as a function of the speckle size and show that the speckle size determines the quality
more » ... the ghost image. Finally, we perform numerical and analytical calculations which agree with our experimental measured results. Our method is simple, broadband, and utilizes a low cost bucket detector for ultrafast spectral measurements.
doi:10.1109/jphot.2021.3138689 fatcat:ur24iqnvn5fplex76dl3yeeteu

Image and Video Forensics

Irene Amerini, Gianmarco Baldini, Francesco Leotta
2021 Journal of Imaging  
Nowadays, images and videos have become the main modalities of information being exchanged in everyday life, and their pervasiveness has led the image forensics community to question their reliability, integrity, confidentiality, and security more and more [...]
doi:10.3390/jimaging7110242 pmid:34821873 pmcid:PMC8625139 fatcat:7rlnho2ftre2fka3iailviw344

New developments in biosensors

Francesco Baldini, Maria Minunni
2019 Analytical and Bioanalytical Chemistry  
Francesco Baldini is senior scientist at the Institute of Applied Physics "Nello Carrara" of the National Research Council.  ... 
doi:10.1007/s00216-019-02232-z pmid:31754766 fatcat:7gp3w5kn3zhbjcv5blo52tifke

Front Matter: Volume 7356

Proceedings of SPIE, Francesco Baldini, Jiri Homola, Robert A. Lieberman
2009 Optical Sensors 2009  
Contents s), "Title of Paper," in Optical Sensors 2009, edited by Francesco Baldini, Jiri Homola, Robert A. Lieberman, Proceedings of SPIE Vol. 7356 (SPIE, Bellingham, WA, 2009) Article CID Number.  ...  Baldini, Institute of Applied Physics (Italy); L. Bolzoni, Datamed S.r.L. (Italy); A. Giannetti, Institute of Applied Physics (Italy); G. Porro, Datamed S.r.L. (Italy); F. Senesi, C.  ... 
doi:10.1117/12.834857 fatcat:gitgxgqnofdaxalqf5vby4kg7y

Towards a Uniform Metrological Assessment of Grating-Based Optical Fiber Sensors: From Refractometers to Biosensors

Francesco Chiavaioli, Carlos Gouveia, Pedro Jorge, Francesco Baldini
2017 Biosensors  
A metrological assessment of grating-based optical fiber sensors is proposed with the aim of providing an objective evaluation of the performance of this sensor category. Attention was focused on the most common parameters, used to describe the performance of both optical refractometers and biosensors, which encompassed sensitivity, with a distinction between volume or bulk sensitivity and surface sensitivity, resolution, response time, limit of detection, specificity (or selectivity),
more » ... ty (or regenerability) and some other parameters of generic interest, such as measurement uncertainty, accuracy, precision, stability, drift, repeatability and reproducibility. Clearly, the concepts discussed here can also be applied to any resonance-based sensor, thus providing the basis for an easier and direct performance comparison of a great number of sensors published in the literature up to now. In addition, common mistakes present in the literature made for the evaluation of sensor performance are highlighted, and lastly a uniform performance assessment is discussed and provided. Finally, some design strategies will be proposed to develop a grating-based optical fiber sensing scheme with improved performance. Biosensors 2017, 7, 23 2 of 29 compared with different technology-based platforms. On the other hand, OFG sensors have the major disadvantage of being sensitive to different measurands at the same time, such as temperature, refractive index (RI) of the medium surrounding the fiber, axial deformation (i.e., strain), pressure and humidity. This aspect entails the application of different strategies in order to make the device sensitive to the parameter of interest. In this work, the surrounding RI (SRI) will be the main parameter considered with an insight into the cross-sensitivity issue. Another drawback may derive from their fragility, thus requiring ad-hoc developed packaging or protections, especially for industrial applications. However, given the increasing attention of the scientific community to OFG sensors, the need for a worldwide acceptable standardization of the sensing performance of an OFG sensor could be of general interest for both the research and industrial communities. The authors do not have the pretension of providing the "one and only" way of assessing the performance of an optical sensor. Instead, the aim of the present work is to offer a contribution based on both our knowledge and experience and on the literature published up to now, so as to provide a reference to facilitate any comparisons, not only within the same class of OFG sensors, but also among different kinds of sensors based on spectral resonance. The most significant parameters for a sensor are defined and described, along with the importance of denoting some crucial parameters with their correct names in order to be able to use the same parameters for describing the sensor performance. In addition, the most common and repeated mistakes in the literature, which arise from the great variety in the formulation and interpretation of the said parameters, are highlighted and discussed in detail. One of the first clear and targeted attempts to provide "some basic definitions of sensor properties" to the scientific community in a standardized manner was made by D'Amico and Di Natale in 2001 [1]. In it, sensor response curve, sensitivity, noise, drift, resolution and selectivity are analyzed as the most frequently used parameters associated with sensor performance. The authors fittingly said of these features, "These words, if well-interpreted, represent a powerful vehicle of information and may symbolize part of a common knowledge useful for a sound dissemination of results relative to the sensor research." After this, other papers were published that provided guidelines specifically designed for chemical and biochemical resonant sensors [2] [3] [4] [5] . In 2008, White and Fan [2] focused on the explanation of the limit of detection (LOD) and the influence of the quality factor (Q-factor) for resonant RI sensors. Our major criticism of this paper is related to the term "LOD", since in our opinion this could be misleading if related to refractometric sensors, in which it is more appropriate to talk about resolution, while its use fits perfectly for biosensors or, overall, for any sensor in which an interaction or binding with a target take place. In the same year, Janiga et al. [3] emphasized the important difference, for a chemical sensor or a biosensor, between the minimum detectable concentration (MDC) used by the International Organization for Standardization (ISO) and the LOD used by the International Union of Pure and Applied Chemistry (IUPAC). Both can be used, and represent compelling features, in assessing sensor performance. The key is simple: when considering the definitions, they both clearly state what the sensor is able to measure. In 2009, Hu et al. [4] proposed some "design guidelines for optical resonator biochemical sensors". They appropriately pointed out the relevance of having a widely accepted figure of merit (FOM) with which to compare different technology platforms and, in this context, they focused on the Q-factor and RI LOD that strongly depend on the resonance peak full width at half maximum (FWHM). As in ref. [2], when someone wants to deal with the minimum RI change discernible from the noise that the sensor is able to measure, they should simply talk about sensor resolution in order to avoid an inexact usage of LOD. However, they also highlighted the influence of thermal fluctuations on sensor performance and the importance of their both having a good fitting procedure in order to reliably evaluate the resonance shift and to increase the number of measurements so as to reduce the noise contribution. All those features turn out to be crucial for improving sensor performance. More recently (2012), Loock and Wentzell [5] focused on the LOD evaluation for chemical and biochemical sensors, and reported the results obtained by comparing three different approaches for determining the detection limit: (i) an analysis of the standard deviations at low concentration; (ii) an evaluation of the instrumental resolution limit and (iii) Biosensors 2017, 7, 23 3 of 29 an examination of the calibration curve. They concluded that the most appropriate way to evaluate the LOD is not to involve the sensor sensitivity and resolution, which in any case are two other important parameters. Rather, it should be determined either from the standard deviations at a low concentration by repeated measurements near the suspected LOD, as also suggested by the American Chemical Society (ACS) [6], or be calculated using the calibration curve, provided that the calibration points can be considered repeatable and reproducible. The first attempt to give a metrological standardization focused only on OFG sensors was provided by Possetti et al. in 2012 [7]. They discussed in detail a method for evaluating uncertainties of measurement, applying it to both the FBG as a temperature sensor and the LPG as an RI sensor. The main conclusion was that, in OFG sensors, the major source of uncertainty (see Section 3.1.1) is related to repeatability (see Section 3.1.4) and reproducibility (see Section 3.1.5). This is ascribed to the combined effect of OFG cross-sensitivity and of environmental conditions, thus requiring some compensation procedures as well as an increase in the number of measurements. The present work attempts to review critically and, at the same time, to combine all the assertions contained in all the papers published previously in the field, with the aim of providing a proper definition of the metrological parameters for the two main classes with regard to optical fiber sensors: the optical refractometers in which the measurement of SRI changes involves all the volume surrounding the sensor (in this case, we should talk about volume or bulk RI measurements) and the optical biosensors in which the measurement of SRI changes involves only the surface of the sensor on which the interaction with the target takes place (in this other case, one should talk about surface RI measurements). This distinction is particularly crucial in small volume analysis [8], as will be pointed out in Section 2. To be more precise, the work is divided as follows: Section 2 illustrates the fundamentals of OFGs focusing on both fiber Bragg gratings (FBGs) and long period gratings (LPGs); Section 3 defines the metrological parameters useful for assessing sensor performance, with some demonstrative examples of the most common mistakes and error present in the literature; Section 4 deals with the most challenging literature on OFG-based refractometers, whereas Section 5 details the same but as related to OFG-based biosensors with a detailed analysis of the cross-sensitivities' issue of OFG sensors in the last two sections; Section 6 highlights some common mistakes present in the literature for the evaluation of OFG-based sensors and makes an attempt to provide a uniform procedure for assessing sensor performance. Lastly, Section 7 provides an outlook on the future perspective of OFG-based sensors. Fundamentals of Optical Fiber Gratings An OFG is a diffraction structure characterized by a periodic modulation of the RI within the core of a single-mode fiber (SMF), which satisfies the phase matching condition between the fundamental mode and other modes, either the core mode or the cladding modes or radiation (or leaky) modes [9] . Thanks to this phase matching, the fiber grating makes possible a controlled and efficient power transfer between modes within the optical fiber leading to a modulation of the transmitted spectrum. Depending on the range of its grating period Λ, OFGs can be classified into short period gratings, better known as FBGs, and into LPGs. The grating period of an FBG is typically of the order of hundreds of nm, resulting in a device that satisfies the phase matching between the fundamental core mode and its respective counter-propagating mode. Therefore, when a broadband optical signal reaches the grating, a narrow spectral fraction is reflected and the remaining is transmitted. The resonance wavelength λ res at which the light is reflected satisfies the well-known Bragg condition [9]: λ res = 2 n eff core Λ, where n eff core is effective RI of the core mode. The spectral width of the resonance peak is of the order of few hundreds of picometers, depending on the physical length of the grating. Figure 1 illustrates the principle of operation of an FBG.
doi:10.3390/bios7020023 pmid:28635665 pmcid:PMC5487959 fatcat:fmcyuhs5srdc7fvn26tvuljnvq

Classification criteria in Sjögren's syndrome

Chiara Baldini, Francesco Ferro, Stefano Bombardieri
2017 Annals of Translational Medicine  
doi:10.21037/atm.2017.05.07 pmid:28856153 pmcid:PMC5555988 fatcat:l2xgvirvzzcyhf5p76uei3glfu

Lossy Mode Resonance Sensors based on Tungsten Oxide Thin Films

Ignacio del Villar, Dina L. Bohorquez, Domenico Caputo, Alessio Buzzin, Francesco Chiavaioli, Francesco Baldini, Carlos R. Zamarreno, Ignacio R. Matias
2020 2020 IEEE Sensors  
Tungsten oxide (WO3) thin-films fabricated on glass slides have been proven to generate lossy mode resonances (LMRs) in the visible region. Obtained devices were characterized in transmission by lateral incidence of light on the edge of glass slides. Resonances at both TE and TM polarizations were analyzed for different thicknesses and in different deposition conditions. Moreover, it was successfully proved that WO3 coated glass slides present a high sensitivity to refractive index, which opens
more » ... the path to the application of this structure in the domain of optical sensors
doi:10.1109/sensors47125.2020.9278899 fatcat:lduc5hshgrdx5hyaxb6z6mjfyi

Front Matter: Volume 6585

Proceedings of SPIE, Francesco Baldini, Jiri Homola, Robert A. Lieberman, Miroslav Miler
2007 Optical Sensing Technology and Applications  
Baldini, Institute for Applied Physics, CNR (Italy); A. Bizzarri, M. Cajlakovic, F. Feichtner, Joanneum Research (Austria); L. Gianesello, Univ. of Florence (Italy); A.  ... 
doi:10.1117/12.746931 fatcat:f2lgu2oosjhpjgjzy4wmuevthm
« Previous Showing results 1 — 15 out of 2,198 results