1 Hit in 2.8 sec

Fixed Points in Metrified Quasi Ordered Sets: Modelling Escaping in Functional Programs [chapter]

Markus Mohnen
<span title="">1999</span> <i title="Springer Berlin Heidelberg"> <a target="_blank" rel="noopener" href="" style="color: black;">Informatik aktuell</a> </i> &nbsp;
We demonstrate the techniques for a simple lazy functional language F by modelling the escape behaviour of F programs.  ...  Instead we obtain quasi ordered sets, which lack the antisymmetry of partially ordered sets.  ...  This paper provides a formal framework for defining semantics based on quasi ordered sets. The main result is a fixed point theorem for metrified quasi ordered sets.  ... 
<span class="external-identifiers"> <a target="_blank" rel="external noopener noreferrer" href="">doi:10.1007/978-3-662-01069-3_55</a> <a target="_blank" rel="external noopener" href="">dblp:conf/gi/Mohnen99</a> <a target="_blank" rel="external noopener" href="">fatcat:nspmetm6kbbabayaywvvjy23i4</a> </span>
<a target="_blank" rel="noopener" href="" title="fulltext PDF download" data-goatcounter-click="serp-fulltext" data-goatcounter-title="serp-fulltext"> <button class="ui simple right pointing dropdown compact black labeled icon button serp-button"> <i class="icon ia-icon"></i> Web Archive [PDF] <div class="menu fulltext-thumbnail"> <img src="" alt="fulltext thumbnail" loading="lazy"> </div> </button> </a> <a target="_blank" rel="external noopener noreferrer" href=""> <button class="ui left aligned compact blue labeled icon button serp-button"> <i class="external alternate icon"></i> </button> </a>