Filters








658 Hits in 6.1 sec

Exploiting Causal Independence in Markov Logic Networks: Combining Undirected and Directed Models [chapter]

Sriraam Natarajan, Tushar Khot, Daniel Lowd, Prasad Tadepalli, Kristian Kersting, Jude Shavlik
<span title="">2010</span> <i title="Springer Berlin Heidelberg"> <a target="_blank" rel="noopener" href="https://fatcat.wiki/container/2w3awgokqne6te4nvlofavy5a4" style="color: black;">Lecture Notes in Computer Science</a> </i> &nbsp;
A new method is proposed for compiling causal independencies into Markov logic networks (MLNs).  ...  combining both undirected and directed knowledge.  ...  This problem is avoided by undirected models such as Markov logic networks (MLNs) [1] , which are based on Markov networks.  ... 
<span class="external-identifiers"> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.1007/978-3-642-15883-4_28">doi:10.1007/978-3-642-15883-4_28</a> <a target="_blank" rel="external noopener" href="https://fatcat.wiki/release/gxugs7qvbfhehc5usxcsthq4zi">fatcat:gxugs7qvbfhehc5usxcsthq4zi</a> </span>
<a target="_blank" rel="noopener" href="https://web.archive.org/web/20181030105000/https://link.springer.com/content/pdf/10.1007%2F978-3-642-15883-4_28.pdf" title="fulltext PDF download" data-goatcounter-click="serp-fulltext" data-goatcounter-title="serp-fulltext"> <button class="ui simple right pointing dropdown compact black labeled icon button serp-button"> <i class="icon ia-icon"></i> Web Archive [PDF] <div class="menu fulltext-thumbnail"> <img src="https://blobs.fatcat.wiki/thumbnail/pdf/fa/ce/face384b21e335aea52eecea6f86f6d8a05c3ca9.180px.jpg" alt="fulltext thumbnail" loading="lazy"> </div> </button> </a> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.1007/978-3-642-15883-4_28"> <button class="ui left aligned compact blue labeled icon button serp-button"> <i class="external alternate icon"></i> springer.com </button> </a>

Application of Bayesian networks on large-scale biological data

Yi Liu, Jing-Dong J. Han
<span title="">2010</span> <i title="Springer Nature"> <a target="_blank" rel="noopener" href="https://fatcat.wiki/container/x24jcs2hzrdcthfrdkl5vxbo24" style="color: black;">Frontiers in Biology</a> </i> &nbsp;
In particular, Bayesian network (BN) is a powerful tool for the ab-initial identification of causal and non-causal relationships between biological factors directly from experimental data.  ...  In this paper, we not only introduce the Bayesian network formalism and its applications in systems biology, but also review recent technical developments for scaling up or speeding up the structural learning  ...  Conversely, the edges of a Markov network are undirected, and there is no restriction for the presence of loops.  ... 
<span class="external-identifiers"> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.1007/s11515-010-0023-8">doi:10.1007/s11515-010-0023-8</a> <a target="_blank" rel="external noopener" href="https://fatcat.wiki/release/iiepdm5eknc7njtlb2aarj7yj4">fatcat:iiepdm5eknc7njtlb2aarj7yj4</a> </span>
<a target="_blank" rel="noopener" href="https://web.archive.org/web/20170808070040/http://www.picb.ac.cn/hanlab/paper/YiLiu.FB.10.pdf" title="fulltext PDF download" data-goatcounter-click="serp-fulltext" data-goatcounter-title="serp-fulltext"> <button class="ui simple right pointing dropdown compact black labeled icon button serp-button"> <i class="icon ia-icon"></i> Web Archive [PDF] <div class="menu fulltext-thumbnail"> <img src="https://blobs.fatcat.wiki/thumbnail/pdf/b4/ae/b4aeb0c1bbee27b580fcaa9af4a24f495113212d.180px.jpg" alt="fulltext thumbnail" loading="lazy"> </div> </button> </a> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.1007/s11515-010-0023-8"> <button class="ui left aligned compact blue labeled icon button serp-button"> <i class="external alternate icon"></i> springer.com </button> </a>

Relational Dependency Networks [chapter]

<span title="">2007</span> <i title="The MIT Press"> Introduction to Statistical Relational Learning </i> &nbsp;
We discuss RDNs in the context of relational Bayes networks and relational Markov networks and outline the relative strengths of RDNs-namely, the ability to represent cyclic dependencies, simple methods  ...  Another class of joint models extend conventional logic programming models to support probabilistic reasoning in first-order logic environments (Kersting and Raedt, 2002; Richardson and Domingos, 2006)  ...  Loiselle and two anonymous reviewers. This effort is supported by DARPA and NSF under contract numbers IIS0326249 and HR0011-04-1-0013. The U.S.  ... 
<span class="external-identifiers"> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.7551/mitpress/7432.003.0010">doi:10.7551/mitpress/7432.003.0010</a> <a target="_blank" rel="external noopener" href="https://fatcat.wiki/release/ayxca53yirbe7e3c465wdlkaly">fatcat:ayxca53yirbe7e3c465wdlkaly</a> </span>
<a target="_blank" rel="noopener" href="https://web.archive.org/web/20190427010257/https://scholarworks.umass.edu/cgi/viewcontent.cgi?article=1125&amp;context=cs_faculty_pubs" title="fulltext PDF download" data-goatcounter-click="serp-fulltext" data-goatcounter-title="serp-fulltext"> <button class="ui simple right pointing dropdown compact black labeled icon button serp-button"> <i class="icon ia-icon"></i> Web Archive [PDF] <div class="menu fulltext-thumbnail"> <img src="https://blobs.fatcat.wiki/thumbnail/pdf/5f/8a/5f8aaefa3c07563cb11884f3f227bd94431544ff.180px.jpg" alt="fulltext thumbnail" loading="lazy"> </div> </button> </a> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.7551/mitpress/7432.003.0010"> <button class="ui left aligned compact blue labeled icon button serp-button"> <i class="external alternate icon"></i> Publisher / doi.org </button> </a>

Relational Models [chapter]

Volker Tresp, Maximilian Nickel
<span title="">2018</span> <i title="Springer New York"> Encyclopedia of Social Network Analysis and Mining </i> &nbsp;
and can be exploited by machines.  ...  An actor in a social network can be modelled as an entity. There can be multiple types of entities, entity attributes and relationships between entities.  ...  Markov Logic Network (MLN) A Markov logic network (MLN) is a probabilistic logic which combines Markov networks with first-order logic. In MLNs the random variables, representing .  ... 
<span class="external-identifiers"> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.1007/978-1-4939-7131-2_245">doi:10.1007/978-1-4939-7131-2_245</a> <a target="_blank" rel="external noopener" href="https://fatcat.wiki/release/fst5kd2d7vhx7f7gmcjnl2ko3a">fatcat:fst5kd2d7vhx7f7gmcjnl2ko3a</a> </span>
<a target="_blank" rel="noopener" href="https://web.archive.org/web/20151201095438/http://www.dbs.ifi.lmu.de/~tresp/papers/RelationalModelsSpringerEncV11SimpleFormat.pdf" title="fulltext PDF download" data-goatcounter-click="serp-fulltext" data-goatcounter-title="serp-fulltext"> <button class="ui simple right pointing dropdown compact black labeled icon button serp-button"> <i class="icon ia-icon"></i> Web Archive [PDF] <div class="menu fulltext-thumbnail"> <img src="https://blobs.fatcat.wiki/thumbnail/pdf/3e/23/3e23ce65374f8d28e0aad207e163f509003fbf3b.180px.jpg" alt="fulltext thumbnail" loading="lazy"> </div> </button> </a> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.1007/978-1-4939-7131-2_245"> <button class="ui left aligned compact blue labeled icon button serp-button"> <i class="external alternate icon"></i> springer.com </button> </a>

Relational Models [chapter]

Volker Tresp, Maximilian Nickel
<span title="">2014</span> <i title="Springer New York"> Encyclopedia of Social Network Analysis and Mining </i> &nbsp;
and can be exploited by machines.  ...  An actor in a social network can be modelled as an entity. There can be multiple types of entities, entity attributes and relationships between entities.  ...  Markov Logic Network (MLN) A Markov logic network (MLN) is a probabilistic logic which combines Markov networks with first-order logic. In MLNs the random variables, representing .  ... 
<span class="external-identifiers"> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.1007/978-1-4614-6170-8_245">doi:10.1007/978-1-4614-6170-8_245</a> <a target="_blank" rel="external noopener" href="https://fatcat.wiki/release/f5qvlgr4bva2vfr7uyzxsvpl4y">fatcat:f5qvlgr4bva2vfr7uyzxsvpl4y</a> </span>
<a target="_blank" rel="noopener" href="https://web.archive.org/web/20151201095438/http://www.dbs.ifi.lmu.de/~tresp/papers/RelationalModelsSpringerEncV11SimpleFormat.pdf" title="fulltext PDF download" data-goatcounter-click="serp-fulltext" data-goatcounter-title="serp-fulltext"> <button class="ui simple right pointing dropdown compact black labeled icon button serp-button"> <i class="icon ia-icon"></i> Web Archive [PDF] <div class="menu fulltext-thumbnail"> <img src="https://blobs.fatcat.wiki/thumbnail/pdf/3e/23/3e23ce65374f8d28e0aad207e163f509003fbf3b.180px.jpg" alt="fulltext thumbnail" loading="lazy"> </div> </button> </a> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.1007/978-1-4614-6170-8_245"> <button class="ui left aligned compact blue labeled icon button serp-button"> <i class="external alternate icon"></i> springer.com </button> </a>

Relational Models [chapter]

Volker Tresp, Maximilian Nickel
<span title="">2016</span> <i title="Springer New York"> Encyclopedia of Social Network Analysis and Mining </i> &nbsp;
and can be exploited by machines.  ...  An actor in a social network can be modelled as an entity. There can be multiple types of entities, entity attributes and relationships between entities.  ...  Markov Logic Network (MLN) A Markov logic network (MLN) is a probabilistic logic which combines Markov networks with first-order logic. In MLNs the random variables, representing .  ... 
<span class="external-identifiers"> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.1007/978-1-4614-7163-9_245-1">doi:10.1007/978-1-4614-7163-9_245-1</a> <a target="_blank" rel="external noopener" href="https://fatcat.wiki/release/tl44qhp7sfa5zi3hi3pnjpeueq">fatcat:tl44qhp7sfa5zi3hi3pnjpeueq</a> </span>
<a target="_blank" rel="noopener" href="https://web.archive.org/web/20151201095438/http://www.dbs.ifi.lmu.de/~tresp/papers/RelationalModelsSpringerEncV11SimpleFormat.pdf" title="fulltext PDF download" data-goatcounter-click="serp-fulltext" data-goatcounter-title="serp-fulltext"> <button class="ui simple right pointing dropdown compact black labeled icon button serp-button"> <i class="icon ia-icon"></i> Web Archive [PDF] <div class="menu fulltext-thumbnail"> <img src="https://blobs.fatcat.wiki/thumbnail/pdf/3e/23/3e23ce65374f8d28e0aad207e163f509003fbf3b.180px.jpg" alt="fulltext thumbnail" loading="lazy"> </div> </button> </a> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.1007/978-1-4614-7163-9_245-1"> <button class="ui left aligned compact blue labeled icon button serp-button"> <i class="external alternate icon"></i> springer.com </button> </a>

Learning probabilistic networks

PAUL J. KRAUSE
<span title="">1999</span> <i title="Cambridge University Press (CUP)"> <a target="_blank" rel="noopener" href="https://fatcat.wiki/container/ppliiwuwhjhjzdhxr5qnaaqsyi" style="color: black;">Knowledge engineering review (Print)</a> </i> &nbsp;
We will see that the influences between variables in a knowledge model can often be usefully considered in terms of "causal" influence when eliciting the structure of a model.  ...  A probabilistic network is a graphical model that encodes probabilistic relationships between variables of interest.  ...  In the case of the global directed Markov property, two sets of variables A and B are conditionally independent given a third, S, if S separates A and B in graph G.  ... 
<span class="external-identifiers"> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.1017/s0269888998004019">doi:10.1017/s0269888998004019</a> <a target="_blank" rel="external noopener" href="https://fatcat.wiki/release/bawbyuvqmvf2bdxbbhaqr4hkhm">fatcat:bawbyuvqmvf2bdxbbhaqr4hkhm</a> </span>
<a target="_blank" rel="noopener" href="https://web.archive.org/web/20040217104838/http://bioinfo.mbb.yale.edu:80/%7Ekluger/outbox/clippings/Bayesian/bayesUS_krause.pdf" title="fulltext PDF download" data-goatcounter-click="serp-fulltext" data-goatcounter-title="serp-fulltext"> <button class="ui simple right pointing dropdown compact black labeled icon button serp-button"> <i class="icon ia-icon"></i> Web Archive [PDF] <div class="menu fulltext-thumbnail"> <img src="https://blobs.fatcat.wiki/thumbnail/pdf/e0/aa/e0aaeae094b1d1b411a80a1843de698adecb088f.180px.jpg" alt="fulltext thumbnail" loading="lazy"> </div> </button> </a> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.1017/s0269888998004019"> <button class="ui left aligned compact blue labeled icon button serp-button"> <i class="external alternate icon"></i> cambridge.org </button> </a>

Abductive Inference with Probabilistic Networks [chapter]

Christian Borgelt, Rudolf Kruse
<span title="">2000</span> <i title="Springer Netherlands"> Abductive Reasoning and Learning </i> &nbsp;
Markov networks. An alternative type of probabilistic networks uses undirected graphs and is called a Markov network [Lauritzen and Spiegelhalter, 1988; Pearl, 1992] .  ...  ) in such a way that they coincide with the direction of the causal influence.  ... 
<span class="external-identifiers"> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.1007/978-94-017-1733-5_7">doi:10.1007/978-94-017-1733-5_7</a> <a target="_blank" rel="external noopener" href="https://fatcat.wiki/release/fqr3sgtkwfg7vfyuvkaul6egq4">fatcat:fqr3sgtkwfg7vfyuvkaul6egq4</a> </span>
<a target="_blank" rel="noopener" href="https://web.archive.org/web/20160304105147/http://www.borgelt.net/papers/abductio.pdf" title="fulltext PDF download" data-goatcounter-click="serp-fulltext" data-goatcounter-title="serp-fulltext"> <button class="ui simple right pointing dropdown compact black labeled icon button serp-button"> <i class="icon ia-icon"></i> Web Archive [PDF] <div class="menu fulltext-thumbnail"> <img src="https://blobs.fatcat.wiki/thumbnail/pdf/a0/ff/a0ff354b4e2d56304a62f65215bb22a1eef213f3.180px.jpg" alt="fulltext thumbnail" loading="lazy"> </div> </button> </a> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.1007/978-94-017-1733-5_7"> <button class="ui left aligned compact blue labeled icon button serp-button"> <i class="external alternate icon"></i> springer.com </button> </a>

Social networks and statistical relational learning: a survey

Floriana Esposito, Stefano Ferilli, Teresa M.A. Basile, Nicola Di Mauro
<span title="">2012</span> <i title="Inderscience Publishers"> <a target="_blank" rel="noopener" href="https://fatcat.wiki/container/7fwrratibve4fc3twcvbzh4n6m" style="color: black;">International Journal of Social Network Mining</a> </i> &nbsp;
Social networks potentially represent an invaluable source of information that can be exploited for scientific and commercial purposes.  ...  Statistical relational learning (SRL) is a very promising approach to SNM, since it combines expressive representation formalisms, able to model complex relational networks, with statistical methods able  ...  and Domingos, 2006) extending the undirected graphical model of Markov networks.  ... 
<span class="external-identifiers"> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.1504/ijsnm.2012.051057">doi:10.1504/ijsnm.2012.051057</a> <a target="_blank" rel="external noopener" href="https://fatcat.wiki/release/6i7n2zrrj5geho3eh6nicay5nm">fatcat:6i7n2zrrj5geho3eh6nicay5nm</a> </span>
<a target="_blank" rel="noopener" href="https://web.archive.org/web/20130108004354/http://www.di.uniba.it/~ndm/publications/files/esposito12ijsnm.pdf" title="fulltext PDF download" data-goatcounter-click="serp-fulltext" data-goatcounter-title="serp-fulltext"> <button class="ui simple right pointing dropdown compact black labeled icon button serp-button"> <i class="icon ia-icon"></i> Web Archive [PDF] <div class="menu fulltext-thumbnail"> <img src="https://blobs.fatcat.wiki/thumbnail/pdf/cf/94/cf944cde3f5801c847de766e2642139ccd1e3243.180px.jpg" alt="fulltext thumbnail" loading="lazy"> </div> </button> </a> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.1504/ijsnm.2012.051057"> <button class="ui left aligned compact blue labeled icon button serp-button"> <i class="external alternate icon"></i> Publisher / doi.org </button> </a>

Comparison of Gene Co-expression Networks and Bayesian Networks [chapter]

Saurabh Nagrecha, Pawan J. Lingras, Nitesh V. Chawla
<span title="">2013</span> <i title="Springer Berlin Heidelberg"> <a target="_blank" rel="noopener" href="https://fatcat.wiki/container/2w3awgokqne6te4nvlofavy5a4" style="color: black;">Lecture Notes in Computer Science</a> </i> &nbsp;
A method is then proposed to get the best out of the strengths of both models, namely, the causality inference from Bayesian networks and the scoring method from a modified version of Zhang and Horvath's  ...  Inferring genetic networks is of great importance in unlocking gene behaviour, which in turn provides solutions for drug testing, disease resistance, and many other applications.  ...  These networks may be directed or undirected, cyclic or acyclic.  ... 
<span class="external-identifiers"> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.1007/978-3-642-36546-1_52">doi:10.1007/978-3-642-36546-1_52</a> <a target="_blank" rel="external noopener" href="https://fatcat.wiki/release/gtfmpl2cqvfebo23dfann7i3ey">fatcat:gtfmpl2cqvfebo23dfann7i3ey</a> </span>
<a target="_blank" rel="noopener" href="https://web.archive.org/web/20170705212416/https://www3.nd.edu/~nchawla/papers/ACIIDS2013.pdf" title="fulltext PDF download" data-goatcounter-click="serp-fulltext" data-goatcounter-title="serp-fulltext"> <button class="ui simple right pointing dropdown compact black labeled icon button serp-button"> <i class="icon ia-icon"></i> Web Archive [PDF] <div class="menu fulltext-thumbnail"> <img src="https://blobs.fatcat.wiki/thumbnail/pdf/49/6c/496c3f6e34b25ec3d1215468a2b89d23d93ca2d2.180px.jpg" alt="fulltext thumbnail" loading="lazy"> </div> </button> </a> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.1007/978-3-642-36546-1_52"> <button class="ui left aligned compact blue labeled icon button serp-button"> <i class="external alternate icon"></i> springer.com </button> </a>

Chain Graph Models to Elicit the Structure of a Bayesian Network

Federico M. Stefanini
<span title="">2014</span> <i title="Hindawi Limited"> <a target="_blank" rel="noopener" href="https://fatcat.wiki/container/nxzqpsogkbe55mjq33syzghf2e" style="color: black;">The Scientific World Journal</a> </i> &nbsp;
Building the structure of large networks is still a challenging task, but Bayesian methods are particularly suited to exploit experts' degree of belief in a quantitative way while learning the network  ...  In this paper details are provided about how to build a prior distribution on the space of network structures by eliciting a chain graph model on structural reference features.  ...  in (2), the so-called Markov causal assumption.  ... 
<span class="external-identifiers"> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.1155/2014/749150">doi:10.1155/2014/749150</a> <a target="_blank" rel="external noopener" href="https://www.ncbi.nlm.nih.gov/pubmed/24688427">pmid:24688427</a> <a target="_blank" rel="external noopener" href="https://pubmed.ncbi.nlm.nih.gov/PMC3932815/">pmcid:PMC3932815</a> <a target="_blank" rel="external noopener" href="https://fatcat.wiki/release/xqq5wtcyqzfz5nlb56npjoicia">fatcat:xqq5wtcyqzfz5nlb56npjoicia</a> </span>
<a target="_blank" rel="noopener" href="https://web.archive.org/web/20190226173557/http://pdfs.semanticscholar.org/70b4/8fccced4e1eca29dcff390170297205fb010.pdf" title="fulltext PDF download" data-goatcounter-click="serp-fulltext" data-goatcounter-title="serp-fulltext"> <button class="ui simple right pointing dropdown compact black labeled icon button serp-button"> <i class="icon ia-icon"></i> Web Archive [PDF] <div class="menu fulltext-thumbnail"> <img src="https://blobs.fatcat.wiki/thumbnail/pdf/70/b4/70b48fccced4e1eca29dcff390170297205fb010.180px.jpg" alt="fulltext thumbnail" loading="lazy"> </div> </button> </a> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.1155/2014/749150"> <button class="ui left aligned compact blue labeled icon button serp-button"> <i class="unlock alternate icon" style="background-color: #fb971f;"></i> hindawi.com </button> </a> <a target="_blank" rel="external noopener" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3932815" title="pubmed link"> <button class="ui compact blue labeled icon button serp-button"> <i class="file alternate outline icon"></i> pubmed.gov </button> </a>

A Critical Look at the Applicability of Markov Logic Networks for Music Signal Analysis [article]

Johan Pauwels, György Fazekas, Mark B. Sandler
<span title="2020-01-16">2020</span> <i > arXiv </i> &nbsp; <span class="release-stage" >pre-print</span>
In recent years, Markov logic networks (MLNs) have been proposed as a potentially useful paradigm for music signal analysis.  ...  Because all hidden Markov models can be reformulated as MLNs, the latter can provide an all-encompassing framework that reuses and extends previous work in the field.  ...  Acknowledgements This work has been partly funded by the UK Engineering and Physical Sciences Research Council (EPSRC) grant EP/L019981/1 and by the European Union's Horizon 2020 research and innovation  ... 
<span class="external-identifiers"> <a target="_blank" rel="external noopener" href="https://arxiv.org/abs/2001.06086v1">arXiv:2001.06086v1</a> <a target="_blank" rel="external noopener" href="https://fatcat.wiki/release/hoomdhlnkraizelfz2aeufncvq">fatcat:hoomdhlnkraizelfz2aeufncvq</a> </span>
<a target="_blank" rel="noopener" href="https://web.archive.org/web/20200321114914/https://arxiv.org/pdf/2001.06086v1.pdf" title="fulltext PDF download" data-goatcounter-click="serp-fulltext" data-goatcounter-title="serp-fulltext"> <button class="ui simple right pointing dropdown compact black labeled icon button serp-button"> <i class="icon ia-icon"></i> Web Archive [PDF] </button> </a> <a target="_blank" rel="external noopener" href="https://arxiv.org/abs/2001.06086v1" title="arxiv.org access"> <button class="ui compact blue labeled icon button serp-button"> <i class="file alternate outline icon"></i> arxiv.org </button> </a>

A Review of Bayesian Networks and Structure Learning

John Noble, Timo J.T. Koski
<span title="2012-08-25">2012</span> <i title="Polish Mathematical Society"> <a target="_blank" rel="noopener" href="https://fatcat.wiki/container/qqdfcf2rbndkjpc2oq4cqm2rca" style="color: black;">Mathematica Applicanda</a> </i> &nbsp;
This article reviews the topic of Bayesian networks. A Bayesian network is a factorisation of a probability distribution along a directed acyclic graph.  ...  The relation between graphical d-separation and independence is described.  ...  Directed Acyclic Graphs and Causal Networks. Independence and d-separation.  ... 
<span class="external-identifiers"> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.14708/ma.v40i1.278">doi:10.14708/ma.v40i1.278</a> <a target="_blank" rel="external noopener" href="https://fatcat.wiki/release/xftrlk4azvg3viilrzuikg5o7q">fatcat:xftrlk4azvg3viilrzuikg5o7q</a> </span>
<a target="_blank" rel="noopener" href="https://web.archive.org/web/20170813172716/https://www.mimuw.edu.pl/~noble/courses/BayesianNetworks/Bayesnetsreview.pdf" title="fulltext PDF download" data-goatcounter-click="serp-fulltext" data-goatcounter-title="serp-fulltext"> <button class="ui simple right pointing dropdown compact black labeled icon button serp-button"> <i class="icon ia-icon"></i> Web Archive [PDF] <div class="menu fulltext-thumbnail"> <img src="https://blobs.fatcat.wiki/thumbnail/pdf/0c/d5/0cd5eedbd3e5f30216566632624e0a28de875252.180px.jpg" alt="fulltext thumbnail" loading="lazy"> </div> </button> </a> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.14708/ma.v40i1.278"> <button class="ui left aligned compact blue labeled icon button serp-button"> <i class="unlock alternate icon" style="background-color: #fb971f;"></i> Publisher / doi.org </button> </a>

Identification of direction in gene networks from expression and methylation

David M Simcha, Laurent Younes, Martin J Aryee, Donald Geman
<span title="">2013</span> <i title="Springer Nature"> <a target="_blank" rel="noopener" href="https://fatcat.wiki/container/xua5vbjwszdirewaoqnikiu5zm" style="color: black;">BMC Systems Biology</a> </i> &nbsp;
Results: We introduce IDEM (Identifying Direction from Expression and Methylation), a method for identifying the causal direction of edges by combining DNA methylation and mRNA transcription data.  ...  edge direction in gene regulatory networks is significantly improved relative to other methods.  ...  Acknowledgements The work of DS and DG was partially supported by NIH-NCRR Grant UL1 RR 025005.  ... 
<span class="external-identifiers"> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.1186/1752-0509-7-118">doi:10.1186/1752-0509-7-118</a> <a target="_blank" rel="external noopener" href="https://www.ncbi.nlm.nih.gov/pubmed/24182195">pmid:24182195</a> <a target="_blank" rel="external noopener" href="https://pubmed.ncbi.nlm.nih.gov/PMC4228359/">pmcid:PMC4228359</a> <a target="_blank" rel="external noopener" href="https://fatcat.wiki/release/mmd45uqjc5belp4zhqevkcysa4">fatcat:mmd45uqjc5belp4zhqevkcysa4</a> </span>
<a target="_blank" rel="noopener" href="https://web.archive.org/web/20190501040510/https://dash.harvard.edu/bitstream/handle/1/13454745/4228359.pdf;jsessionid=740F2D4416D2C2B25174DF4A6F8A3A8C?sequence=1" title="fulltext PDF download" data-goatcounter-click="serp-fulltext" data-goatcounter-title="serp-fulltext"> <button class="ui simple right pointing dropdown compact black labeled icon button serp-button"> <i class="icon ia-icon"></i> Web Archive [PDF] <div class="menu fulltext-thumbnail"> <img src="https://blobs.fatcat.wiki/thumbnail/pdf/00/dd/00dd1dd6149b953f624e833d9df3d5afbf806475.180px.jpg" alt="fulltext thumbnail" loading="lazy"> </div> </button> </a> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.1186/1752-0509-7-118"> <button class="ui left aligned compact blue labeled icon button serp-button"> <i class="unlock alternate icon" style="background-color: #fb971f;"></i> springer.com </button> </a> <a target="_blank" rel="external noopener" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4228359" title="pubmed link"> <button class="ui compact blue labeled icon button serp-button"> <i class="file alternate outline icon"></i> pubmed.gov </button> </a>

Probabilistic graphical models in modern social network analysis

Alireza Farasat, Alexander Nikolaev, Sargur N. Srihari, Rachael Hageman Blair
<span title="2015-10-19">2015</span> <i title="Springer Nature"> <a target="_blank" rel="noopener" href="https://fatcat.wiki/container/3xvqvdkqejfvdeozx2l3c3rxti" style="color: black;">Social Network Analysis and Mining</a> </i> &nbsp;
In this review, we describe directed and undirected Probabilistic Graphical Models (PGMs), and describe recent applications to social networks.  ...  For this reason, we begin with a thorough description of data collection and sampling methods, which are often necessary in social networks, and underlie any downstream modeling efforts.  ...  In this review, we describe directed and undirected Probabilistic Graphical Models (PGMs), and describe recent applications to social networks.  ... 
<span class="external-identifiers"> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.1007/s13278-015-0289-6">doi:10.1007/s13278-015-0289-6</a> <a target="_blank" rel="external noopener" href="https://fatcat.wiki/release/ovrlvvfgonhttl65aqt7p3ckqq">fatcat:ovrlvvfgonhttl65aqt7p3ckqq</a> </span>
<a target="_blank" rel="noopener" href="https://web.archive.org/web/20161020091350/http://www.cedar.buffalo.edu:80/~srihari/papers/SNAM-PGM.pdf" title="fulltext PDF download" data-goatcounter-click="serp-fulltext" data-goatcounter-title="serp-fulltext"> <button class="ui simple right pointing dropdown compact black labeled icon button serp-button"> <i class="icon ia-icon"></i> Web Archive [PDF] <div class="menu fulltext-thumbnail"> <img src="https://blobs.fatcat.wiki/thumbnail/pdf/24/3b/243bec0423d9a4ff5fa8fb67dd2171b319846749.180px.jpg" alt="fulltext thumbnail" loading="lazy"> </div> </button> </a> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.1007/s13278-015-0289-6"> <button class="ui left aligned compact blue labeled icon button serp-button"> <i class="external alternate icon"></i> springer.com </button> </a>
&laquo; Previous Showing results 1 &mdash; 15 out of 658 results