VATLD: A Visual Analytics System to Assess, Understand and Improve Traffic Light Detection
[article]
Liang Gou, Lincan Zou, Nanxiang Li, Michael Hofmann, Arvind Kumar Shekar, Axel Wendt, Liu Ren
<span title="2020-09-27">2020</span>
<i >
arXiv
</i>
<span class="release-stage" >pre-print</span>
In this work, we propose a visual analytics system, VATLD, equipped with a disentangled representation learning and semantic adversarial learning, to assess, understand, and improve the accuracy and robustness ...
The disentangled representation learning extracts data semantics to augment human cognition with human-friendly visual summarization, and the semantic adversarial learning efficiently exposes interpretable ...
Surveys from both machine learning [38] and visual analytics [11, 28, 46] offer more insights into this. ...
<span class="external-identifiers">
<a target="_blank" rel="external noopener" href="https://arxiv.org/abs/2009.12975v1">arXiv:2009.12975v1</a>
<a target="_blank" rel="external noopener" href="https://fatcat.wiki/release/35gtds7y6rcjxm7tvnk2orxgaa">fatcat:35gtds7y6rcjxm7tvnk2orxgaa</a>
</span>
<a target="_blank" rel="noopener" href="https://web.archive.org/web/20200930023430/https://arxiv.org/pdf/2009.12975v1.pdf" title="fulltext PDF download" data-goatcounter-click="serp-fulltext" data-goatcounter-title="serp-fulltext">
<button class="ui simple right pointing dropdown compact black labeled icon button serp-button">
<i class="icon ia-icon"></i>
Web Archive
[PDF]
</button>
</a>
<a target="_blank" rel="external noopener" href="https://arxiv.org/abs/2009.12975v1" title="arxiv.org access">
<button class="ui compact blue labeled icon button serp-button">
<i class="file alternate outline icon"></i>
arxiv.org
</button>
</a>