Calibrated Bagging Deep Learning for Image Semantic Segmentation: A Case Study on COVID-19 Chest X-ray Image
[article]
Lucy Nwosu, Xiangfang Li, Lijun Qian, Seungchan Kim, Xishuang Dong
<span title="2022-05-27">2022</span>
<i >
arXiv
</i>
<span class="release-stage" >pre-print</span>
In this work, we propose a novel ensemble deep learning model through integrating bagging deep learning and model calibration to not only enhance segmentation performance, but also reduce prediction uncertainty ...
However, prediction uncertainty of deep learning models for these tasks, which is very important to safety-critical applications like medical image processing, has not been comprehensively investigated ...
RELATED WORK This paper aims to build a novel bagging learning method to implement COVID-19 semantic segmentation through combining bagging deep learning and model calibration. ...
<span class="external-identifiers">
<a target="_blank" rel="external noopener" href="https://arxiv.org/abs/2206.00002v1">arXiv:2206.00002v1</a>
<a target="_blank" rel="external noopener" href="https://fatcat.wiki/release/4rsjpmosxfgelngkpkkxdnvwde">fatcat:4rsjpmosxfgelngkpkkxdnvwde</a>
</span>
<a target="_blank" rel="noopener" href="https://web.archive.org/web/20220605173359/https://arxiv.org/pdf/2206.00002v1.pdf" title="fulltext PDF download" data-goatcounter-click="serp-fulltext" data-goatcounter-title="serp-fulltext">
<button class="ui simple right pointing dropdown compact black labeled icon button serp-button">
<i class="icon ia-icon"></i>
Web Archive
[PDF]
<div class="menu fulltext-thumbnail">
<img src="https://blobs.fatcat.wiki/thumbnail/pdf/f9/0d/f90d6424aa7ee1323f546053251e60aa44c9a5a0.180px.jpg" alt="fulltext thumbnail" loading="lazy">
</div>
</button>
</a>
<a target="_blank" rel="external noopener" href="https://arxiv.org/abs/2206.00002v1" title="arxiv.org access">
<button class="ui compact blue labeled icon button serp-button">
<i class="file alternate outline icon"></i>
arxiv.org
</button>
</a>