Filters








5 Hits in 0.39 sec

Embeddability of the combinohedron

J.L. Ramı́rez Alfonsı́n, David Romero
<span title="">2002</span> <i title="Elsevier BV"> <a target="_blank" rel="noopener" href="https://fatcat.wiki/container/civgv5utqzhu7aj6voo6vc5vx4" style="color: black;">Discrete Mathematics</a> </i> &nbsp;
The graph known as permutohedron is a particular case of the combinohedron. Here, we extend to the combinohedron some results on embeddability of the permutohedron.  ...  The combinohedron, denoted by C(r1; : : : ; rm), is the loopless graph whose vertices are the n-tuples in which the symbol ei appears exactly ri times, and where an edge joins two vertices if and only  ...  realm of musical composition theory [12] , re-invented the concept of combinohedron.  ... 
<span class="external-identifiers"> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.1016/s0012-365x(01)00298-9">doi:10.1016/s0012-365x(01)00298-9</a> <a target="_blank" rel="external noopener" href="https://fatcat.wiki/release/zhfr35kqnjchrasz77ty6gnfmi">fatcat:zhfr35kqnjchrasz77ty6gnfmi</a> </span>
<a target="_blank" rel="noopener" href="https://web.archive.org/web/20171002013822/http://publisher-connector.core.ac.uk/resourcesync/data/elsevier/pdf/ae1/aHR0cDovL2FwaS5lbHNldmllci5jb20vY29udGVudC9hcnRpY2xlL3BpaS9zMDAxMjM2NXgwMTAwMjk4OQ%3D%3D.pdf" title="fulltext PDF download" data-goatcounter-click="serp-fulltext" data-goatcounter-title="serp-fulltext"> <button class="ui simple right pointing dropdown compact black labeled icon button serp-button"> <i class="icon ia-icon"></i> Web Archive [PDF] <div class="menu fulltext-thumbnail"> <img src="https://blobs.fatcat.wiki/thumbnail/pdf/de/30/de30c433f2529fddd220a176f660f40b4a683e48.180px.jpg" alt="fulltext thumbnail" loading="lazy"> </div> </button> </a> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.1016/s0012-365x(01)00298-9"> <button class="ui left aligned compact blue labeled icon button serp-button"> <i class="external alternate icon"></i> elsevier.com </button> </a>

Page 1592 of Mathematical Reviews Vol. , Issue 2003C [page]

<span title="">2003</span> <i title="American Mathematical Society"> <a target="_blank" rel="noopener" href="https://archive.org/details/pub_mathematical-reviews" style="color: black;">Mathematical Reviews </a> </i> &nbsp;
Here, we extend to the combinohedron some results on embeddability of the permutohedron.” 2003¢:05066 05C10 05C70 Wozniak, Mariusz (PL-STSAM; Krakow) On cyclically embeddable (, — 1)-graphs.  ...  The graph known as the permutohedron is a particular case of the combinohedron.  ... 
<span class="external-identifiers"> </span>
<a target="_blank" rel="noopener" href="https://archive.org/details/sim_mathematical-reviews_2003-03_2003c/page/1592" title="read fulltext microfilm" data-goatcounter-click="serp-fulltext" data-goatcounter-title="serp-fulltext"> <button class="ui simple right pointing dropdown compact black labeled icon button serp-button"> <i class="icon ia-icon"></i> Archive [Microfilm] <div class="menu fulltext-thumbnail"> <img src="https://archive.org/serve/sim_mathematical-reviews_2003-03_2003c/__ia_thumb.jpg" alt="fulltext thumbnail" loading="lazy"> </div> </button> </a>

On semicube graphs

Sandi Klavžar, Matjaž Kovše
<span title="">2009</span> <i title="Elsevier BV"> <a target="_blank" rel="noopener" href="https://fatcat.wiki/container/54t3hgai4fhhthc74mj7z7tapu" style="color: black;">European journal of combinatorics (Print)</a> </i> &nbsp;
In particular the chromatic number, the independence number and the domination number of semicube graphs of trees are determined in terms of related invariants of trees.  ...  Eppstein, The lattice dimension of a graph, European J. Combin. 26 (2005) 585-592] introduced semicube graphs as the key tool for efficient computation of the lattice dimension of a graph.  ...  This work was supported by the Ministry of Science of Slovenia under the grant P1-0297.  ... 
<span class="external-identifiers"> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.1016/j.ejc.2008.03.004">doi:10.1016/j.ejc.2008.03.004</a> <a target="_blank" rel="external noopener" href="https://fatcat.wiki/release/e7b4meu7vjg5fgechcccak5bky">fatcat:e7b4meu7vjg5fgechcccak5bky</a> </span>
<a target="_blank" rel="noopener" href="https://web.archive.org/web/20170930013747/http://publisher-connector.core.ac.uk/resourcesync/data/elsevier/pdf/852/aHR0cDovL2FwaS5lbHNldmllci5jb20vY29udGVudC9hcnRpY2xlL3BpaS9zMDE5NTY2OTgwODAwMDY5Mw%3D%3D.pdf" title="fulltext PDF download" data-goatcounter-click="serp-fulltext" data-goatcounter-title="serp-fulltext"> <button class="ui simple right pointing dropdown compact black labeled icon button serp-button"> <i class="icon ia-icon"></i> Web Archive [PDF] <div class="menu fulltext-thumbnail"> <img src="https://blobs.fatcat.wiki/thumbnail/pdf/7e/f5/7ef5dac4ba475eaf574ee780377977a251012834.180px.jpg" alt="fulltext thumbnail" loading="lazy"> </div> </button> </a> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.1016/j.ejc.2008.03.004"> <button class="ui left aligned compact blue labeled icon button serp-button"> <i class="external alternate icon"></i> elsevier.com </button> </a>

Page 150 of Mathematical Reviews Vol. , Issue Index [page]

<i title="American Mathematical Society"> <a target="_blank" rel="noopener" href="https://archive.org/details/pub_mathematical-reviews" style="color: black;">Mathematical Reviews </a> </i> &nbsp;
(with Romero, David) Embeddability of the combinohedron. (English summary) 2003¢:05065 Richardson, Daniele M. see Watkins, John J. et al. Richter, R.  ...  A criterion for the embeddability of (r, q )- polycycles. (Russian) 2003f:05033 Diwan, Ajit A. (with Kurhekar, Manish P.) Plane triangulations are 6-partitionable.  ... 
<span class="external-identifiers"> </span>
<a target="_blank" rel="noopener" href="https://archive.org/details/sim_mathematical-reviews_2003_index_1/page/150" title="read fulltext microfilm" data-goatcounter-click="serp-fulltext" data-goatcounter-title="serp-fulltext"> <button class="ui simple right pointing dropdown compact black labeled icon button serp-button"> <i class="icon ia-icon"></i> Archive [Microfilm] <div class="menu fulltext-thumbnail"> <img src="https://archive.org/serve/sim_mathematical-reviews_2003_index_1/__ia_thumb.jpg" alt="fulltext thumbnail" loading="lazy"> </div> </button> </a>

Page 1769 of Mathematical Reviews Vol. , Issue Index [page]

<i title="American Mathematical Society"> <a target="_blank" rel="noopener" href="https://archive.org/details/pub_mathematical-reviews" style="color: black;">Mathematical Reviews </a> </i> &nbsp;
Embeddability of the combinohedron. (En- glish summary) Discrete Math. 254 (2002), no. 1-3, 473-483. (Summary) 2003¢:05065 05C10 (52C07) Romero, F.  ...  1769 2003 — Estimates for the approximation characteristics of the Besov classes Bi, of periodic functions of several variables in the space L,. II. (Russian. English and Ukrainian summaries) Ukrain.  ... 
<span class="external-identifiers"> </span>
<a target="_blank" rel="noopener" href="https://archive.org/details/sim_mathematical-reviews_2003_index_0/page/1769" title="read fulltext microfilm" data-goatcounter-click="serp-fulltext" data-goatcounter-title="serp-fulltext"> <button class="ui simple right pointing dropdown compact black labeled icon button serp-button"> <i class="icon ia-icon"></i> Archive [Microfilm] <div class="menu fulltext-thumbnail"> <img src="https://archive.org/serve/sim_mathematical-reviews_2003_index_0/__ia_thumb.jpg" alt="fulltext thumbnail" loading="lazy"> </div> </button> </a>