1 Hit in 2.0 sec

Decompositions to Degree-Constrainded Subgraphs Are Simply Reducible to Edge-Colorings

Xiao Zhou, Takao Nishizeki
<span title="">1999</span> <i title="Elsevier BV"> <a target="_blank" rel="noopener" href="" style="color: black;">Journal of combinatorial theory. Series B (Print)</a> </i> &nbsp;
In this paper we show that the problem can be simply reduced to the edge-coloring problem in polynomial-time.  ...  The degree-constrained subgraphs decomposition problem, such as an f-coloring, an f-factorization, and a [ g, f ]-factorization, is to decompose a given graph G=(V, E) to edge-disjoint subgraphs degree-constrained  ...  In this paper we show that the degree-constrained subgraphs decomposition problem can be simply reduced to the edge-coloring problem in polynomial time.  ... 
<span class="external-identifiers"> <a target="_blank" rel="external noopener noreferrer" href="">doi:10.1006/jctb.1998.1883</a> <a target="_blank" rel="external noopener" href="">fatcat:etxdchk3grd4rdty4mznkr33eu</a> </span>
<a target="_blank" rel="noopener" href="" title="fulltext PDF download" data-goatcounter-click="serp-fulltext" data-goatcounter-title="serp-fulltext"> <button class="ui simple right pointing dropdown compact black labeled icon button serp-button"> <i class="icon ia-icon"></i> Web Archive [PDF] <div class="menu fulltext-thumbnail"> <img src="" alt="fulltext thumbnail" loading="lazy"> </div> </button> </a> <a target="_blank" rel="external noopener noreferrer" href=""> <button class="ui left aligned compact blue labeled icon button serp-button"> <i class="external alternate icon"></i> Publisher / </button> </a>