The Polynomial Complexity of Vector Addition Systems with States
[chapter]
Florian Zuleger
<span title="">2020</span>
<i title="Springer International Publishing">
<a target="_blank" rel="noopener" href="https://fatcat.wiki/container/2w3awgokqne6te4nvlofavy5a4" style="color: black;">Lecture Notes in Computer Science</a>
</i>
For these systems, we are interested in the standard notion of computational time complexity, i.e., we want to understand the length of the longest trace for a fixed vector addition system with states ...
We show that the asymptotic complexity of a given vector addition system with states is either Θ(N k ) for some computable integer k, where N is the size of the initial configuration, or at least exponential ...
[15] presents a PTIME procedure for deciding whether a VASS is polynomial or at least exponential, but does not give a precise analysis in case of polynomial complexity. ...
<span class="external-identifiers">
<a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.1007/978-3-030-45231-5_32">doi:10.1007/978-3-030-45231-5_32</a>
<a target="_blank" rel="external noopener" href="https://fatcat.wiki/release/5vuxssuwkvdzfihfe3ubw2t7om">fatcat:5vuxssuwkvdzfihfe3ubw2t7om</a>
</span>
<a target="_blank" rel="noopener" href="https://web.archive.org/web/20200509175044/https://link.springer.com/content/pdf/10.1007%2F978-3-030-45231-5_32.pdf" title="fulltext PDF download" data-goatcounter-click="serp-fulltext" data-goatcounter-title="serp-fulltext">
<button class="ui simple right pointing dropdown compact black labeled icon button serp-button">
<i class="icon ia-icon"></i>
Web Archive
[PDF]
<div class="menu fulltext-thumbnail">
<img src="https://blobs.fatcat.wiki/thumbnail/pdf/c9/fb/c9fbffc81c099e9e918b709b4cb4bcb5dbdd32da.180px.jpg" alt="fulltext thumbnail" loading="lazy">
</div>
</button>
</a>
<a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.1007/978-3-030-45231-5_32">
<button class="ui left aligned compact blue labeled icon button serp-button">
<i class="external alternate icon"></i>
springer.com
</button>
</a>