Filters








34 Hits in 0.86 sec

A Seft-adaptive Multicellular GEP Algorithm Based On Fuzzy Control For Function Optimization [article]

Chuyan Deng, Yuzhong Peng, Hongya Li, Daoqing Gong, Hao Zhang, Zhiping Liu
<span title="2019-04-01">2019</span> <i > arXiv </i> &nbsp; <span class="release-stage" >pre-print</span>
To improve the global optimization ability of traditional GEP algorithm, a Multicellular gene expression programming algorithm based on fuzzy control (Multicellular GEP Algorithm Based On Fuzzy Control, MGEP-FC) is proposed. The MGEP-FC algorithm describes the size of cross rate, mutation rate and real number mutation rate by constructing fuzzy membership function. According to the concentration and dispersion of individual fitness values in population, the crossover rate, mutation rate and
more &raquo; ... number set mutation rate of genetic operation are dynamically adjusted. In order to make the diversity of the population continue in the iterative process, a new genetic operation scheme is designed, which combines the new individuals with the parent population to build a temporary population, and the diversity of the temporary and subpopulation are optimized. The results of 12 Benchmark optimization experiments show that the MGEP-FC algorithm has been greatly improved in stability, global convergence and optimization speed.
<span class="external-identifiers"> <a target="_blank" rel="external noopener" href="https://arxiv.org/abs/1906.08851v1">arXiv:1906.08851v1</a> <a target="_blank" rel="external noopener" href="https://fatcat.wiki/release/2ow6tt2g4jab7il3g7ylw26gpm">fatcat:2ow6tt2g4jab7il3g7ylw26gpm</a> </span>
<a target="_blank" rel="noopener" href="https://web.archive.org/web/20191221232355/https://arxiv.org/pdf/1906.08851v1.pdf" title="fulltext PDF download" data-goatcounter-click="serp-fulltext" data-goatcounter-title="serp-fulltext"> <button class="ui simple right pointing dropdown compact black labeled icon button serp-button"> <i class="icon ia-icon"></i> Web Archive [PDF] <div class="menu fulltext-thumbnail"> <img src="https://blobs.fatcat.wiki/thumbnail/pdf/c0/de/c0de8fc0cca6b69ccac67b98dc4bb9a6c5e64821.180px.jpg" alt="fulltext thumbnail" loading="lazy"> </div> </button> </a> <a target="_blank" rel="external noopener" href="https://arxiv.org/abs/1906.08851v1" title="arxiv.org access"> <button class="ui compact blue labeled icon button serp-button"> <i class="file alternate outline icon"></i> arxiv.org </button> </a>

A SVM and SLIC Based Detection Method for Paddy Field Boundary Line

Yanming Li, Zijia Hong, Daoqing Cai, Yixiang Huang, Liang Gong, Chengliang Liu
<span title="2020-05-03">2020</span> <i title="MDPI AG"> <a target="_blank" rel="noopener" href="https://fatcat.wiki/container/taedaf6aozg7vitz5dpgkojane" style="color: black;">Sensors</a> </i> &nbsp;
Visual based route and boundary detection is a key technology in agricultural automatic navigation systems. The variable illumination and lack of training samples has a bad effect on visual route detection in unstructured farmland environments. In order to improve the robustness of the boundary detection under different illumination conditions, an image segmentation algorithm based on support vector machine was proposed. A superpixel segmentation algorithm was adopted to solve the lack of
more &raquo; ... ng samples for a support vector machine. A sufficient number of superpixel samples were selected for extraction of color and texture features, thus a 19-dimensional feature vector was formed. Then, the support vector machine model was trained and used to identify the paddy ridge field in the new picture. The recognition F1 score can reach 90.7%. Finally, Hough transform detection was used to extract the boundary of the ridge field. The total running time of the proposed algorithm is within 0.8 s and can meet the real-time requirements of agricultural machinery.
<span class="external-identifiers"> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.3390/s20092610">doi:10.3390/s20092610</a> <a target="_blank" rel="external noopener" href="https://www.ncbi.nlm.nih.gov/pubmed/32375262">pmid:32375262</a> <a target="_blank" rel="external noopener" href="https://fatcat.wiki/release/tecypu5ljbaynf6wz3efzpaqre">fatcat:tecypu5ljbaynf6wz3efzpaqre</a> </span>
<a target="_blank" rel="noopener" href="https://web.archive.org/web/20200522081553/https://res.mdpi.com/d_attachment/sensors/sensors-20-02610/article_deploy/sensors-20-02610.pdf" title="fulltext PDF download" data-goatcounter-click="serp-fulltext" data-goatcounter-title="serp-fulltext"> <button class="ui simple right pointing dropdown compact black labeled icon button serp-button"> <i class="icon ia-icon"></i> Web Archive [PDF] <div class="menu fulltext-thumbnail"> <img src="https://blobs.fatcat.wiki/thumbnail/pdf/20/d4/20d48312cd73bdeddca27f22e3a9e683433448d6.180px.jpg" alt="fulltext thumbnail" loading="lazy"> </div> </button> </a> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.3390/s20092610"> <button class="ui left aligned compact blue labeled icon button serp-button"> <i class="unlock alternate icon" style="background-color: #fb971f;"></i> mdpi.com </button> </a>

Growth Hormone-Regulated mRNAs and miRNAs in Chicken Hepatocytes

Xingguo Wang, Lei Yang, Huijuan Wang, Fang Shao, JianFeng Yu, Honglin Jiang, Yaoping Han, Daoqing Gong, Zhiliang Gu, Michael Schubert
<span title="2014-11-11">2014</span> <i title="Public Library of Science (PLoS)"> <a target="_blank" rel="noopener" href="https://fatcat.wiki/container/s3gm7274mfe6fcs7e3jterqlri" style="color: black;">PLoS ONE</a> </i> &nbsp;
Growth hormone (GH) is a key regulatory factor in animal growth, development and metabolism. Based on the expression level of the GH receptor, the chicken liver is a major target organ of GH, but the biological effects of GH on the chicken liver are not fully understood. In this work we identified mRNAs and miRNAs that are regulated by GH in primary hepatocytes from female chickens through RNA-seq, and analyzed the functional relevance of these mRNAs and miRNAs through GO enrichment analysis
more &raquo; ... miRNA target prediction. A total of 164 mRNAs were found to be differentially expressed between GH-treated and control chicken hepatocytes, of which 112 were up-regulated and 52 were down-regulated by GH. A total of 225 chicken miRNAs were identified by the RNA-Seq analysis. Among these miRNAs 16 were up-regulated and 1 miRNA was down-regulated by GH. The GH-regulated mRNAs were mainly involved in growth and metabolism. Most of the GHupregulated or GH-downregulated miRNAs were predicted to target the GH-downregulated or GH-upregulated mRNAs, respectively, involved in lipid metabolism. This study reveals that GH regulates the expression of many mRNAs involved in metabolism in female chicken hepatocytes, which suggests that GH plays an important role in regulating liver metabolism in female chickens. The results of this study also support the hypothesis that GH regulates lipid metabolism in chicken liver in part by regulating the expression of miRNAs that target the mRNAs involved in lipid metabolism.
<span class="external-identifiers"> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.1371/journal.pone.0112896">doi:10.1371/journal.pone.0112896</a> <a target="_blank" rel="external noopener" href="https://www.ncbi.nlm.nih.gov/pubmed/25386791">pmid:25386791</a> <a target="_blank" rel="external noopener" href="https://pubmed.ncbi.nlm.nih.gov/PMC4227886/">pmcid:PMC4227886</a> <a target="_blank" rel="external noopener" href="https://fatcat.wiki/release/bosn3jyxxnehhbk5o4ulwp7wyq">fatcat:bosn3jyxxnehhbk5o4ulwp7wyq</a> </span>
<a target="_blank" rel="noopener" href="https://web.archive.org/web/20171010111039/http://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0112896&amp;type=printable" title="fulltext PDF download" data-goatcounter-click="serp-fulltext" data-goatcounter-title="serp-fulltext"> <button class="ui simple right pointing dropdown compact black labeled icon button serp-button"> <i class="icon ia-icon"></i> Web Archive [PDF] <div class="menu fulltext-thumbnail"> <img src="https://blobs.fatcat.wiki/thumbnail/pdf/45/07/45079ca2fba1940930c16178c3fde91582877405.180px.jpg" alt="fulltext thumbnail" loading="lazy"> </div> </button> </a> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.1371/journal.pone.0112896"> <button class="ui left aligned compact blue labeled icon button serp-button"> <i class="unlock alternate icon" style="background-color: #fb971f;"></i> plos.org </button> </a> <a target="_blank" rel="external noopener" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4227886" title="pubmed link"> <button class="ui compact blue labeled icon button serp-button"> <i class="file alternate outline icon"></i> pubmed.gov </button> </a>

OTUD7A Regulates Inflammation- and Immune-Related Gene Expression in Goose Fatty Liver

Minmeng Zhao, Kang Wen, Xiang Fan, Qingyun Sun, Diego Jauregui, Mawahib K. Khogali, Long Liu, Tuoyu Geng, Daoqing Gong
<span title="2022-01-13">2022</span> <i title="MDPI AG"> <a target="_blank" rel="noopener" href="https://fatcat.wiki/container/6iatzfbfmfbi5o7oaltji6olja" style="color: black;">Agriculture</a> </i> &nbsp;
OTU deubiquitinase 7A (OTUD7A) can suppress inflammation signaling pathways, but it is unclear whether the gene can inhibit inflammation in goose fatty liver. In order to investigate the functions of OTUD7A and identify the genes and pathways subjected to the regulation of OTUD7A in the formation of goose fatty liver, we conducted transcriptomic analysis of cells, which revealed several genes related to inflammation and immunity that were significantly differentially expressed after OTUD7A
more &raquo; ... xpression. Moreover, the expression of interferon-induced protein with tetratricopeptide repeats 5 (IFIT5), tumor necrosis factor ligand superfamily member 8 (TNFSF8), sterile alpha motif domain-containing protein 9 (SAMD9), radical S-adenosyl methionine domain-containing protein 2 (RSAD2), interferon-induced GTP-binding protein Mx1 (MX1), and interferon-induced guanylate binding protein 1-like (GBP1) was inhibited by OTUD7A overexpression but induced by OTUD7A knockdown with small interfering RNA in goose hepatocytes. Furthermore, the mRNA expression of IFIT5, TNFSF8, SAMD9, RSAD2, MX1, and GBP1 was downregulated, whereas OTUD7A expression was upregulated in goose fatty liver after 12 days of overfeeding. In contrast, the expression patterns of these genes showed nearly the opposite trend after 24 days of overfeeding. Taken together, these findings indicate that OTUD7A regulates the expression of inflammation- and immune-related genes in the development of goose fatty liver.
<span class="external-identifiers"> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.3390/agriculture12010105">doi:10.3390/agriculture12010105</a> <a target="_blank" rel="external noopener" href="https://fatcat.wiki/release/h7fslqumvfhzfpfsrtkxma5bsm">fatcat:h7fslqumvfhzfpfsrtkxma5bsm</a> </span>
<a target="_blank" rel="noopener" href="https://web.archive.org/web/20220114045103/https://mdpi-res.com/d_attachment/agriculture/agriculture-12-00105/article_deploy/agriculture-12-00105.pdf" title="fulltext PDF download" data-goatcounter-click="serp-fulltext" data-goatcounter-title="serp-fulltext"> <button class="ui simple right pointing dropdown compact black labeled icon button serp-button"> <i class="icon ia-icon"></i> Web Archive [PDF] <div class="menu fulltext-thumbnail"> <img src="https://blobs.fatcat.wiki/thumbnail/pdf/74/b1/74b14d61a3e44ff6b15b133962298cd5e411b234.180px.jpg" alt="fulltext thumbnail" loading="lazy"> </div> </button> </a> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.3390/agriculture12010105"> <button class="ui left aligned compact blue labeled icon button serp-button"> <i class="unlock alternate icon" style="background-color: #fb971f;"></i> mdpi.com </button> </a>

GC-TOF-MS-Based Metabolomics Analyses of Liver and Intestinal Contents in the Overfed vs. Normally-Fed Geese

Minmeng Zhao, Ya Xing, Lidong Liu, Xiang Fan, Long Liu, Tuoyu Geng, Daoqing Gong
<span title="2020-12-11">2020</span> <i title="MDPI AG"> <a target="_blank" rel="noopener" href="https://fatcat.wiki/container/hpefvtxa65c3ligdlwjcphei34" style="color: black;">Animals</a> </i> &nbsp;
No overt pathological symptoms are observed in the goose liver with severe steatosis, suggesting that geese may host unique protective mechanisms. Gas chromatography time-of-flight mass spectrometry-based metabolomics analyses of liver and intestinal contents in overfed vs. normally fed geese (26 geese in each treatment) were investigated. We found that overfeeding significantly changed the metabolic profiles of liver and intestinal contents. The differential metabolites mainly belong to fatty
more &raquo; ... cids, amino acids, organic acids, and amines. The differential metabolites were involved in glycolysis/gluconeogenesis, glycerolipid metabolism, the pentose phosphate pathway, fatty acid degradation, the sphingolipid signaling pathway, and the biosynthesis of unsaturated fatty acids. Moreover, we determined the biological effects of arachidonic acid (ARA) and tetrahydrocorticosterone (TD) in goose primary hepatocytes and intestinal cells. Data showed that the mRNA expression of arachidonate 5-lipoxygenase (ALOX5) in goose primary intestinal cells was significantly induced by 0.50 mM ARA treatment. Cytochrome P-450 27A1 (CYP27A1) mRNA expression was significantly inhibited in goose primary hepatocytes by 1 µM TD treatment. In conclusion, the formation of goose fatty liver is accompanied by significant changes in the metabolic profiles of liver and intestinal contents, and the changes are closely related to the metabolisms of glucose and fatty acids, oxidative stress, and inflammatory reactions.
<span class="external-identifiers"> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.3390/ani10122375">doi:10.3390/ani10122375</a> <a target="_blank" rel="external noopener" href="https://www.ncbi.nlm.nih.gov/pubmed/33322323">pmid:33322323</a> <a target="_blank" rel="external noopener" href="https://fatcat.wiki/release/5qct3ohm4faqjh26qyt47t5kty">fatcat:5qct3ohm4faqjh26qyt47t5kty</a> </span>
<a target="_blank" rel="noopener" href="https://web.archive.org/web/20201218123217/https://res.mdpi.com/d_attachment/animals/animals-10-02375/article_deploy/animals-10-02375.pdf" title="fulltext PDF download" data-goatcounter-click="serp-fulltext" data-goatcounter-title="serp-fulltext"> <button class="ui simple right pointing dropdown compact black labeled icon button serp-button"> <i class="icon ia-icon"></i> Web Archive [PDF] <div class="menu fulltext-thumbnail"> <img src="https://blobs.fatcat.wiki/thumbnail/pdf/d4/90/d4906651068f75c7e1d012d9db6936d83a0353e0.180px.jpg" alt="fulltext thumbnail" loading="lazy"> </div> </button> </a> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.3390/ani10122375"> <button class="ui left aligned compact blue labeled icon button serp-button"> <i class="unlock alternate icon" style="background-color: #fb971f;"></i> mdpi.com </button> </a>

Screening of MicroRNAs with Potential Systemic Effects Released from Goose Fatty Liver

Xue Fan, Ya Xing, Long Liu, Chao Zhao, Zhenzhen Chen, Mawahib K. Khogali, Minmeng Zhao, Xuming Hu, Hengmi Cui, Tuoyu Geng, Daoqing Gong
<span title="2021-10-25">2021</span> <i title="Japan Poultry Science Association"> <a target="_blank" rel="noopener" href="https://fatcat.wiki/container/r354vgzqw5bfvd4d4it24iy5ie" style="color: black;">The Journal of Poultry Science</a> </i> &nbsp;
Communication between tissues and organs plays an important role in the maintenance of normal physiological functions as well as the occurrence and development of diseases. Communication molecules act as a bridge for interactions between tissues and organs, playing not only a local role in the tissues and organs where they are secreted but also in exerting systemic effects on the whole body via circulation. In this study, blood microRNA-omics analysis of overfed vs. normally fed (control)
more &raquo; ... geese revealed that the content of each of the 21 microRNAs (miRNAs) in the blood of overfed geese was significantly higher than that in the blood of control geese. These miRNAs may have systematic effects in the development of goose fatty liver as well as being candidate markers for the diagnosis of goose fatty liver. We determined the expression of miR-143, miR-455-5p, miR-222a-5p, miR-184, miR-1662, and miR-129-5p using quantitative PCR in goose fatty liver vs. that in normal liver. The expression of these miRNAs, except miR-129-5p, in goose fatty liver was also significantly higher than that in normal liver (P<0.05), suggesting that these blood miRNAs are released from goose fatty liver. In addition, we found that expression of IGFBP5, the predicted target gene of miR-143, was significantly decreased in goose fatty liver vs. the normal liver (P<0.05), indicating that miR-143 may exert both local and systematic effects by inhibiting the expression of IGFBP5, thus promoting the development of goose fatty liver. In conclusion, we identified several miRNAs, including those we validated (i.e., miR-143, miR-455-5p, miR-222a-5p, miR-184, miR-1662, and miR-129-5p) that may serve as candidate markers in the diagnosis of goose fatty liver as well as local and global regulators contributing to the development of goose fatty liver.
<span class="external-identifiers"> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.2141/jpsa.0200097">doi:10.2141/jpsa.0200097</a> <a target="_blank" rel="external noopener" href="https://www.ncbi.nlm.nih.gov/pubmed/34899022">pmid:34899022</a> <a target="_blank" rel="external noopener" href="https://pubmed.ncbi.nlm.nih.gov/PMC8630403/">pmcid:PMC8630403</a> <a target="_blank" rel="external noopener" href="https://fatcat.wiki/release/ypfmcs2sk5btpfjmmg63orpjwu">fatcat:ypfmcs2sk5btpfjmmg63orpjwu</a> </span>
<a target="_blank" rel="noopener" href="https://web.archive.org/web/20210129085937/https://www.jstage.jst.go.jp/article/jpsa/advpub/0/advpub_0200097/_pdf" title="fulltext PDF download" data-goatcounter-click="serp-fulltext" data-goatcounter-title="serp-fulltext"> <button class="ui simple right pointing dropdown compact black labeled icon button serp-button"> <i class="icon ia-icon"></i> Web Archive [PDF] <div class="menu fulltext-thumbnail"> <img src="https://blobs.fatcat.wiki/thumbnail/pdf/2d/70/2d706e63f4ca0bcd20a0d34ce42deec961570c6c.180px.jpg" alt="fulltext thumbnail" loading="lazy"> </div> </button> </a> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.2141/jpsa.0200097"> <button class="ui left aligned compact blue labeled icon button serp-button"> <i class="unlock alternate icon" style="background-color: #fb971f;"></i> Publisher / doi.org </button> </a> <a target="_blank" rel="external noopener" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8630403" title="pubmed link"> <button class="ui compact blue labeled icon button serp-button"> <i class="file alternate outline icon"></i> pubmed.gov </button> </a>

Maintaining intestinal structural integrity is a potential protective mechanism against inflammation in goose fatty liver

Wang Gu, Kang Wen, Chunchi Yan, Shuo Li, Tongjun Liu, Cheng Xu, Long Liu, Minmeng Zhao, Jun Zhang, Tuoyu Geng, Daoqing Gong
<span title="2020-09-04">2020</span> <i title="Elsevier BV"> <a target="_blank" rel="noopener" href="https://fatcat.wiki/container/jhytkkqgwbhfxfzpvgbykzogsu" style="color: black;">Poultry Science</a> </i> &nbsp;
Overfeeding causes severe steatosis but not inflammation in goose liver, suggesting existence of protective components. Previous studies have shown that some intestinal microbes and their metabolites damage intestinal structural integrity and function, thus causing inflammation in the development of human and mouse nonalcoholic fatty liver disease. Therefore, this study hypothesizes that intestinal structural integrity of goose is maintained during overfeeding, which may provide goose fatty
more &raquo; ... r a protective mechanism against inflammation. To test this hypothesis, 48 seventy-day-old healthy Landes male geese were overfed (as overfeeding group) or normally fed (as control group). Blood and intestine (jejunum, ileum, and cecum) samples were harvested on the 12th and 24th d of overfeeding. Data showed that goose fatty liver was successfully induced by 24 d of overfeeding. Hematoxylin-eosin staining analysis indicated that the arrangement of villi and crypts in the intestine was orderly, and the intestinal structure was intact with no pathological symptoms in the 2 groups. Enzyme-linked immunosorbent assay and quantitative PCR analysis indicated no significant differences in the expression of tight junction and inflammation-related genes as well as plasma lipopolysaccharide concentration between the groups. Ileal hypertrophy and cecal atrophy were observed in the overfed vs. control geese, probably because of change of sphingolipid metabolism. Activation of apoptotic pathway may help cecum avoid necrosis-induced inflammation. In conclusion, healthy and intact intestine provides a layer of protection for goose fatty liver against inflammation. Sphingolipid metabolism may be involved in the adaptation of ileum and cecum to overfeeding. The hypertrophy of ileum makes it an important contributor to the development of goose fatty liver. The atrophy and decline in the function of cecum may be caused by apoptosis induced by overfeeding.
<span class="external-identifiers"> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.1016/j.psj.2020.08.052">doi:10.1016/j.psj.2020.08.052</a> <a target="_blank" rel="external noopener" href="https://www.ncbi.nlm.nih.gov/pubmed/33142445">pmid:33142445</a> <a target="_blank" rel="external noopener" href="https://pubmed.ncbi.nlm.nih.gov/PMC7647926/">pmcid:PMC7647926</a> <a target="_blank" rel="external noopener" href="https://fatcat.wiki/release/yywfgcmybbexdhrvuh6ik5fi74">fatcat:yywfgcmybbexdhrvuh6ik5fi74</a> </span>
<a target="_blank" rel="noopener" href="https://web.archive.org/web/20210527005620/http://europepmc.org/backend/ptpmcrender.fcgi?accid=PMC7647926&amp;blobtype=pdf" title="fulltext PDF download" data-goatcounter-click="serp-fulltext" data-goatcounter-title="serp-fulltext"> <button class="ui simple right pointing dropdown compact black labeled icon button serp-button"> <i class="icon ia-icon"></i> Web Archive [PDF] <div class="menu fulltext-thumbnail"> <img src="https://blobs.fatcat.wiki/thumbnail/pdf/b4/36/b4368cdcfe15b6c7c3d0570a34de4b17bf67b378.180px.jpg" alt="fulltext thumbnail" loading="lazy"> </div> </button> </a> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.1016/j.psj.2020.08.052"> <button class="ui left aligned compact blue labeled icon button serp-button"> <i class="unlock alternate icon" style="background-color: #fb971f;"></i> elsevier.com </button> </a> <a target="_blank" rel="external noopener" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7647926" title="pubmed link"> <button class="ui compact blue labeled icon button serp-button"> <i class="file alternate outline icon"></i> pubmed.gov </button> </a>

Detection of miR-33 Expression and the Verification of Its Target Genes in the Fatty Liver of Geese

Yun Zheng, Shibei Jiang, Yihui Zhang, Rui Zhang, Daoqing Gong
<span title="2015-06-05">2015</span> <i title="MDPI AG"> <a target="_blank" rel="noopener" href="https://fatcat.wiki/container/3loumxx7kzamnlu4h6x3xoz6ay" style="color: black;">International Journal of Molecular Sciences</a> </i> &nbsp;
Author Contributions Daoqing Gong conceived and designed the experiments; Yun Zheng, Shibei Jiang, Yihui Zhang and Rui Zhang performed the experiments; Shibei Jiang analyzed the data; Yun Zheng and Shibei  ... 
<span class="external-identifiers"> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.3390/ijms160612737">doi:10.3390/ijms160612737</a> <a target="_blank" rel="external noopener" href="https://www.ncbi.nlm.nih.gov/pubmed/26057744">pmid:26057744</a> <a target="_blank" rel="external noopener" href="https://pubmed.ncbi.nlm.nih.gov/PMC4490470/">pmcid:PMC4490470</a> <a target="_blank" rel="external noopener" href="https://fatcat.wiki/release/xtf4rotnhvhb5koju4eopwcuzu">fatcat:xtf4rotnhvhb5koju4eopwcuzu</a> </span>
<a target="_blank" rel="noopener" href="https://web.archive.org/web/20150713040505/http://www.mdpi.com:80/1422-0067/16/6/12737/pdf" title="fulltext PDF download" data-goatcounter-click="serp-fulltext" data-goatcounter-title="serp-fulltext"> <button class="ui simple right pointing dropdown compact black labeled icon button serp-button"> <i class="icon ia-icon"></i> Web Archive [PDF] <div class="menu fulltext-thumbnail"> <img src="https://blobs.fatcat.wiki/thumbnail/pdf/39/3e/393edfaabf67b1a7be606268c37e08ae3c66381e.180px.jpg" alt="fulltext thumbnail" loading="lazy"> </div> </button> </a> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.3390/ijms160612737"> <button class="ui left aligned compact blue labeled icon button serp-button"> <i class="unlock alternate icon" style="background-color: #fb971f;"></i> mdpi.com </button> </a> <a target="_blank" rel="external noopener" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4490470" title="pubmed link"> <button class="ui compact blue labeled icon button serp-button"> <i class="file alternate outline icon"></i> pubmed.gov </button> </a>

Dietary Clostridium butyricum and Bacillus subtilis Promote Goose Growth by Improving Intestinal Structure and Function, Antioxidative Capacity and Microbial Composition

Jie Yu, Biao Dong, Minmeng Zhao, Long Liu, Tuoyu Geng, Daoqing Gong, Jian Wang
<span title="2021-11-06">2021</span> <i title="MDPI AG"> <a target="_blank" rel="noopener" href="https://fatcat.wiki/container/hpefvtxa65c3ligdlwjcphei34" style="color: black;">Animals</a> </i> &nbsp;
Probiotics are a substitute for antibiotics in the sense of intestinal health maintenance. Clostridium butyricum and Bacillus subtilis, as probiotic bacteria, have been widely used in animal production. The aim of this study was to investigate the effects of the two probiotic bacteria in geese. A total of 288 1-day old, healthy Yangzhou geese were randomly assigned into 4 groups (A, B, C and D) with 6 replicates of 12 birds each. Group A, as control, was fed a basal diet, and the treatment
more &raquo; ... s (B, C and D) were fed the basal diet supplemented with 250 mg/kg Clostridium butyricum (the viable count was 3.0 × 106 CFU/g), 250 mg/kg Bacillus subtilis (the viable count was 2.0 × 107 CFU/g), or a combination of the two probiotic bacteria for 70 days, respectively. The results indicated that: compared with the control group, dietary probiotics (1) promoted the growth and feed intake of the geese, (2) increased the absolute weight of duodenum, (3) increased the antioxidative capacity (total antioxidative capacity (T-AOC), total superoxide dismutase (T-SOD) and glutathione peroxidase (GSH-PX)) of intestinal mucosa, (4) improved intestinal morphology (the ratio of villus height to crypt depth), (5) but did not induce inflammation and changes of tight junction in the intestine, which was indicated by no induction of pro/inflammatory cytokines (IL-1β, IL-6, IL-10, TNFAIP3) and tight junction related genes (TJP1 and OCLN). Moreover, dietary probiotics increased the relative abundances of Firmicutes phylum and Lactobacillus genus and decreased the relative abundances of Proteobacteria phylum or Ralstonia genus in the intestinal content. In addition, the alpha diversity (observed species, Chao1, and estimate the number of OTUs in the community(ACE)) was reduced and the predicted functions of intestinal microflora, including peptidases, carbon fixation and metabolic function of starch and sugar, were enhanced by dietary probiotics. In conclusion, dietary probiotics promote the growth of geese by their positive effects on intestinal structure and function, the composition and functions of gut microflora, and intestinal antioxidative capacity.
<span class="external-identifiers"> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.3390/ani11113174">doi:10.3390/ani11113174</a> <a target="_blank" rel="external noopener" href="https://www.ncbi.nlm.nih.gov/pubmed/34827906">pmid:34827906</a> <a target="_blank" rel="external noopener" href="https://pubmed.ncbi.nlm.nih.gov/PMC8614425/">pmcid:PMC8614425</a> <a target="_blank" rel="external noopener" href="https://fatcat.wiki/release/kwtfoe64yfaa5cd2zsf7inf26u">fatcat:kwtfoe64yfaa5cd2zsf7inf26u</a> </span>
<a target="_blank" rel="noopener" href="https://web.archive.org/web/20220430150451/https://mdpi-res.com/d_attachment/animals/animals-11-03174/article_deploy/animals-11-03174.pdf?version=1636200329" title="fulltext PDF download" data-goatcounter-click="serp-fulltext" data-goatcounter-title="serp-fulltext"> <button class="ui simple right pointing dropdown compact black labeled icon button serp-button"> <i class="icon ia-icon"></i> Web Archive [PDF] <div class="menu fulltext-thumbnail"> <img src="https://blobs.fatcat.wiki/thumbnail/pdf/94/a1/94a12ea19cb0d0edec50427f3d876d74f9d43034.180px.jpg" alt="fulltext thumbnail" loading="lazy"> </div> </button> </a> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.3390/ani11113174"> <button class="ui left aligned compact blue labeled icon button serp-button"> <i class="unlock alternate icon" style="background-color: #fb971f;"></i> mdpi.com </button> </a> <a target="_blank" rel="external noopener" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8614425" title="pubmed link"> <button class="ui compact blue labeled icon button serp-button"> <i class="file alternate outline icon"></i> pubmed.gov </button> </a>

Involvement of IGFBP5 in the Development of Goose Fatty Liver via p38 Mitogen-Activated Protein Kinase (MAPK)

Diego Jauregui, Mawahib K. Khogali, Ya Xing, Xiang Fan, Kang Wen, Long Liu, Minmeng Zhao, Tuoyu Geng, Daoqing Gong
<span title="2022-02-28">2022</span> <i title="MDPI AG"> <a target="_blank" rel="noopener" href="https://fatcat.wiki/container/6iatzfbfmfbi5o7oaltji6olja" style="color: black;">Agriculture</a> </i> &nbsp;
Previous studies showed that insulin-like growth factor-binding protein 5 (IGFBP5) plays a role in non-alcoholic fatty liver disease; however, its expression and function in goose fatty liver remain unknown. To address this, we obtained a full-length mRNA sequence of the goose IGFBP5 gene using a 5′-rapid amplification of cDNA ends assay and nested polymerase chain reaction (PCR). Additionally, using the newly acquired sequence of 5'-untraslated region, we determined the missing sequence of the
more &raquo; ... first intron. Bioinformatics analysis revealed three exons and three introns in the goose IGFBP5 gene. Quantitative PCR analysis indicated that the mRNA abundance of IGFBP5 was significantly lower in goose fatty liver than in the normal liver. Comparison of transcriptomes of goose primary hepatocytes transfected with IGFBP5 overexpression vector versus those transfected with empty vector identified 777 differentially expressed genes (DEGs). The enriched Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways indicated the focal adhesion, ECM-receptor interaction, regulation of the actin cytoskeleton, mitogen-activated protein kinase (MAPK) signaling, and GnRH signaling pathways. Immunoblotting revealed the induction of the p38 MAPK pathway by IGFBP5 overexpression, which is in line with the suppressed expression of IGFBP5 and p38 MAPK in goose fatty liver than in normal liver. These findings suggest that IGFBP5 is involved in the development of goose fatty liver via the p38 MAPK pathway.
<span class="external-identifiers"> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.3390/agriculture12030347">doi:10.3390/agriculture12030347</a> <a target="_blank" rel="external noopener" href="https://fatcat.wiki/release/ht4uu2qdkzfxrdo3doy5fkqdse">fatcat:ht4uu2qdkzfxrdo3doy5fkqdse</a> </span>
<a target="_blank" rel="noopener" href="https://web.archive.org/web/20220311083215/https://mdpi-res.com/d_attachment/agriculture/agriculture-12-00347/article_deploy/agriculture-12-00347-v2.pdf" title="fulltext PDF download" data-goatcounter-click="serp-fulltext" data-goatcounter-title="serp-fulltext"> <button class="ui simple right pointing dropdown compact black labeled icon button serp-button"> <i class="icon ia-icon"></i> Web Archive [PDF] <div class="menu fulltext-thumbnail"> <img src="https://blobs.fatcat.wiki/thumbnail/pdf/66/2f/662f5827ea5037e06d7f285db77c05a75da6f2f1.180px.jpg" alt="fulltext thumbnail" loading="lazy"> </div> </button> </a> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.3390/agriculture12030347"> <button class="ui left aligned compact blue labeled icon button serp-button"> <i class="unlock alternate icon" style="background-color: #fb971f;"></i> mdpi.com </button> </a>

Primary sex determination in chickens depends on DMRT1 dosage, but gonadal sex does not determine secondary sexual characteristics in adult birds [article]

Jason Ioannidis, Gunes Taylor, Debiao Zhao, Long Liu, Alewo Idoko-Akoh, Daoqing Gong, Robin Lovell-Badge, Silvana Guioli, Mike McGrew, Michael Clinton
<span title="2020-09-19">2020</span> <i title="Cold Spring Harbor Laboratory"> bioRxiv </i> &nbsp; <span class="release-stage" >pre-print</span>
AbstractIn birds, males are the homogametic sex (ZZ) and females the heterogametic sex (ZW), and primary sex determination is thought to depend on a sex chromosome gene dosage mechanism. Previous studies have suggested that the most likely sex-determinant is the Z chromosome gene DMRT1 (Doublesex and Mab-3 Related Transcription factor 1). To clarify this issue, we used a CRISPR-Cas9 based mono-allelic targeting approach and sterile surrogate hosts to generate birds with targeted mutations in
more &raquo; ... DMRT1 gene. The resulting chromosomally male (ZZ) chicken with a single functional copy of DMRT1 developed ovaries in place of testes, demonstrating the avian sex determining mechanism is based on DMRT1 dosage. These ZZ ovaries expressed typical female markers and showed clear evidence of follicular development. However, these ZZ adult birds with an ovary in place of testes were indistinguishable in appearance to wild type adult males, supporting the concept of cell-autonomous sex identity (CASI) in birds. In experiments where oestrogen synthesis was blocked in control ZW embryos, the resulting gonads developed as testes. In contrast, if oestrogen synthesis was blocked in ZW embryos that lacked DMRT1, the gonads invariably adopted an ovarian fate. Our analysis shows that DMRT1 is the key sex determination switch in birds and that it is essential for testis development, but that production of oestrogen is also a key factor in primary sex determination in chickens, and that this production is linked to DMRT1 expression.
<span class="external-identifiers"> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.1101/2020.09.18.303040">doi:10.1101/2020.09.18.303040</a> <a target="_blank" rel="external noopener" href="https://fatcat.wiki/release/lwdbf7pyojgwxeg277636tp7z4">fatcat:lwdbf7pyojgwxeg277636tp7z4</a> </span>
<a target="_blank" rel="noopener" href="https://web.archive.org/web/20210108215319/https://www.biorxiv.org/content/biorxiv/early/2020/09/19/2020.09.18.303040.full.pdf" title="fulltext PDF download" data-goatcounter-click="serp-fulltext" data-goatcounter-title="serp-fulltext"> <button class="ui simple right pointing dropdown compact black labeled icon button serp-button"> <i class="icon ia-icon"></i> Web Archive [PDF] <div class="menu fulltext-thumbnail"> <img src="https://blobs.fatcat.wiki/thumbnail/pdf/59/c9/59c9a4aa137ddf58c0123d76b34ef1e9db384aa2.180px.jpg" alt="fulltext thumbnail" loading="lazy"> </div> </button> </a> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.1101/2020.09.18.303040"> <button class="ui left aligned compact blue labeled icon button serp-button"> <i class="external alternate icon"></i> biorxiv.org </button> </a>

Prosteatotic and Protective Components in a Unique Model of Fatty Liver: Gut Microbiota and Suppressed Complement System

Long Liu, Xing Zhao, Qian Wang, Xiaoxian Sun, Lili Xia, Qianqian Wang, Biao Yang, Yihui Zhang, Sean Montgomery, He Meng, Tuoyu Geng, Daoqing Gong
<span title="2016-08-23">2016</span> <i title="Springer Nature"> <a target="_blank" rel="noopener" href="https://fatcat.wiki/container/tnqhc2x2aneavcd3gx5h7mswhm" style="color: black;">Scientific Reports</a> </i> &nbsp;
<span class="external-identifiers"> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.1038/srep31763">doi:10.1038/srep31763</a> <a target="_blank" rel="external noopener" href="https://www.ncbi.nlm.nih.gov/pubmed/27550859">pmid:27550859</a> <a target="_blank" rel="external noopener" href="https://pubmed.ncbi.nlm.nih.gov/PMC4994046/">pmcid:PMC4994046</a> <a target="_blank" rel="external noopener" href="https://fatcat.wiki/release/ygtx2ko6zra2jm4k4rqmarcslm">fatcat:ygtx2ko6zra2jm4k4rqmarcslm</a> </span>
<a target="_blank" rel="noopener" href="https://web.archive.org/web/20190221035424/http://pdfs.semanticscholar.org/3314/fbefc93e8ddc54ce52af37f6940e56c8821e.pdf" title="fulltext PDF download" data-goatcounter-click="serp-fulltext" data-goatcounter-title="serp-fulltext"> <button class="ui simple right pointing dropdown compact black labeled icon button serp-button"> <i class="icon ia-icon"></i> Web Archive [PDF] <div class="menu fulltext-thumbnail"> <img src="https://blobs.fatcat.wiki/thumbnail/pdf/33/14/3314fbefc93e8ddc54ce52af37f6940e56c8821e.180px.jpg" alt="fulltext thumbnail" loading="lazy"> </div> </button> </a> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.1038/srep31763"> <button class="ui left aligned compact blue labeled icon button serp-button"> <i class="unlock alternate icon" style="background-color: #fb971f;"></i> Publisher / doi.org </button> </a> <a target="_blank" rel="external noopener" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4994046" title="pubmed link"> <button class="ui compact blue labeled icon button serp-button"> <i class="file alternate outline icon"></i> pubmed.gov </button> </a>

Illumina Sequencing and Metabolomics Analysis Reveal Thiamine Modulation of Ruminal Microbiota and Metabolome Characteristics in Goats Fed a High-Concentrate Diet

Yi Ma, Chao Wang, Hao Zhang, Lihuai Yu, Li Dong, Daoqing Gong, Junhu Yao, Hongrong Wang
<span title="2021-04-07">2021</span> <i title="Frontiers Media SA"> <a target="_blank" rel="noopener" href="https://fatcat.wiki/container/67anf6qgandy5adz4rakospiuq" style="color: black;">Frontiers in Microbiology</a> </i> &nbsp;
Copyright © 2021 Ma, Wang, Zhang, Yu, Dong, Gong, Yao and Wang. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY).  ... 
<span class="external-identifiers"> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.3389/fmicb.2021.653283">doi:10.3389/fmicb.2021.653283</a> <a target="_blank" rel="external noopener" href="https://www.ncbi.nlm.nih.gov/pubmed/33897666">pmid:33897666</a> <a target="_blank" rel="external noopener" href="https://pubmed.ncbi.nlm.nih.gov/PMC8058204/">pmcid:PMC8058204</a> <a target="_blank" rel="external noopener" href="https://fatcat.wiki/release/asuxhabq2rbetnnbv5vhmwpb4e">fatcat:asuxhabq2rbetnnbv5vhmwpb4e</a> </span>
<a target="_blank" rel="noopener" href="https://web.archive.org/web/20210428094323/https://fjfsdata01prod.blob.core.windows.net/articles/files/653283/pubmed-zip/.versions/1/.package-entries/fmicb-12-653283/fmicb-12-653283.pdf?sv=2018-03-28&amp;sr=b&amp;sig=Bx4G5Q7sy1%2Fe4rGlZix2lstnz4t4k4RJ8iJg%2Fc5BlDE%3D&amp;se=2021-04-28T09%3A43%3A52Z&amp;sp=r&amp;rscd=attachment%3B%20filename%2A%3DUTF-8%27%27fmicb-12-653283.pdf" title="fulltext PDF download" data-goatcounter-click="serp-fulltext" data-goatcounter-title="serp-fulltext"> <button class="ui simple right pointing dropdown compact black labeled icon button serp-button"> <i class="icon ia-icon"></i> Web Archive [PDF] <div class="menu fulltext-thumbnail"> <img src="https://blobs.fatcat.wiki/thumbnail/pdf/e9/76/e976cf9fff4f17e95925b46749eca5b3bef0c6ee.180px.jpg" alt="fulltext thumbnail" loading="lazy"> </div> </button> </a> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.3389/fmicb.2021.653283"> <button class="ui left aligned compact blue labeled icon button serp-button"> <i class="unlock alternate icon" style="background-color: #fb971f;"></i> frontiersin.org </button> </a> <a target="_blank" rel="external noopener" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8058204" title="pubmed link"> <button class="ui compact blue labeled icon button serp-button"> <i class="file alternate outline icon"></i> pubmed.gov </button> </a>

Role of miR29c in goose fatty liver is mediated by its target genes that are involved in energy homeostasis and cell growth

Long Liu, Qian Wang, Qianqian Wang, Xing Zhao, Pan Zhao, Tuoyu Geng, Daoqing Gong
<span title="2018-11-06">2018</span> <i title="Springer (Biomed Central Ltd.)"> <a target="_blank" rel="noopener" href="https://fatcat.wiki/container/l2gdqe4dhjch3kdpdtuzewuqme" style="color: black;">BMC Veterinary Research</a> </i> &nbsp;
A short period of overfeeding can lead to severe hepatic steatosis in the goose, which is physiological, suggesting that geese, as a descendent of a migrating ancestor, may have evolutionally developed a unique mechanism that operates in contrast to the mechanism underlying pathological fatty liver in humans or other mammals. In this study, we report that suppression of miR29c and upregulation of its target genes in goose fatty liver vs. normal liver could be part of a unique mechanism that
more &raquo; ... ributes to the regulation of energy homeostasis and cell growth. Our data showed that miR29c expression was comprehensively inhibited in energy homeostasis-related tissues (the liver, fat and muscle) of overfed vs. normally fed geese, which is different from miR29c induction that occurs in tissues of the diabetic rat. To address the function of miR29c, three predicted target genes (i.e., Insig1, Sgk1 and Col3a1) that participate in energy homeostasis or cell growth were validated by a dual-fluorescence reporter system and other in vitro assays. Importantly, expression of Insig1, Sgk1 and Col3a1 was upregulated in goose fatty liver. In line with these observations, treatment of goose hepatocytes with high glucose or palmitate suppressed the expression of miR29c but induced the expression of the target genes, suggesting that hyperglycemia and hyperlipidemia, at least partially, contribute to the suppression of miR29c and induction of the target genes in goose fatty liver. In addition, pharmacological assays indicated that RFX1 was a transcription factor involved in the expression of miR29c. This study suggests that miR29c may play a role in the regulation of energy homeostasis and tissue growth via its target genes, contributing to the tolerance of the goose to severe hepatic steatosis.
<span class="external-identifiers"> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.1186/s12917-018-1653-3">doi:10.1186/s12917-018-1653-3</a> <a target="_blank" rel="external noopener" href="https://www.ncbi.nlm.nih.gov/pubmed/30400792">pmid:30400792</a> <a target="_blank" rel="external noopener" href="https://pubmed.ncbi.nlm.nih.gov/PMC6219092/">pmcid:PMC6219092</a> <a target="_blank" rel="external noopener" href="https://fatcat.wiki/release/2cpiu4dtbjafbmhuyiqtfm2v3a">fatcat:2cpiu4dtbjafbmhuyiqtfm2v3a</a> </span>
<a target="_blank" rel="noopener" href="https://web.archive.org/web/20190427110916/https://bmcvetres.biomedcentral.com/track/pdf/10.1186/s12917-018-1653-3" title="fulltext PDF download" data-goatcounter-click="serp-fulltext" data-goatcounter-title="serp-fulltext"> <button class="ui simple right pointing dropdown compact black labeled icon button serp-button"> <i class="icon ia-icon"></i> Web Archive [PDF] <div class="menu fulltext-thumbnail"> <img src="https://blobs.fatcat.wiki/thumbnail/pdf/d1/df/d1dfb2cc4569fd3e3214b5283108abb3ccaf0725.180px.jpg" alt="fulltext thumbnail" loading="lazy"> </div> </button> </a> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.1186/s12917-018-1653-3"> <button class="ui left aligned compact blue labeled icon button serp-button"> <i class="unlock alternate icon" style="background-color: #fb971f;"></i> springer.com </button> </a> <a target="_blank" rel="external noopener" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6219092" title="pubmed link"> <button class="ui compact blue labeled icon button serp-button"> <i class="file alternate outline icon"></i> pubmed.gov </button> </a>

Gallin; an antimicrobial peptide member of a new avian defensin family, the ovodefensins, has been subject to recent gene duplication

Daoqing Gong, Peter W Wilson, Maureen M Bain, Karina McDade, Jiri Kalina, Virginie Hervé-Grépinet, Yves Nys, Ian C Dunn
<span title="">2010</span> <i title="Springer Nature"> <a target="_blank" rel="noopener" href="https://fatcat.wiki/container/celzzgufk5hu3burahvivmot4i" style="color: black;">BMC Immunology</a> </i> &nbsp;
BMC Immunology 2010, 11:12 http://www.biomedcentral.com/1471-2172/11/12 Page 9 of 15 Gong et al.  ...  Gong et al. BMC Immunology 2010, 11:12 http://www.biomedcentral.com/1471-2172/11/12 Figure 4 The gallin promoter.  ... 
<span class="external-identifiers"> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.1186/1471-2172-11-12">doi:10.1186/1471-2172-11-12</a> <a target="_blank" rel="external noopener" href="https://www.ncbi.nlm.nih.gov/pubmed/20226050">pmid:20226050</a> <a target="_blank" rel="external noopener" href="https://pubmed.ncbi.nlm.nih.gov/PMC2846878/">pmcid:PMC2846878</a> <a target="_blank" rel="external noopener" href="https://fatcat.wiki/release/w3xclpfl5ne4lfkji4bzyi4m34">fatcat:w3xclpfl5ne4lfkji4bzyi4m34</a> </span>
<a target="_blank" rel="noopener" href="https://web.archive.org/web/20111119123006/http://www.biomedcentral.com/content/pdf/1471-2172-11-12.pdf" title="fulltext PDF download" data-goatcounter-click="serp-fulltext" data-goatcounter-title="serp-fulltext"> <button class="ui simple right pointing dropdown compact black labeled icon button serp-button"> <i class="icon ia-icon"></i> Web Archive [PDF] <div class="menu fulltext-thumbnail"> <img src="https://blobs.fatcat.wiki/thumbnail/pdf/78/b9/78b92c72db128948b0f279df54fdf639343ab945.180px.jpg" alt="fulltext thumbnail" loading="lazy"> </div> </button> </a> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.1186/1471-2172-11-12"> <button class="ui left aligned compact blue labeled icon button serp-button"> <i class="unlock alternate icon" style="background-color: #fb971f;"></i> springer.com </button> </a> <a target="_blank" rel="external noopener" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2846878" title="pubmed link"> <button class="ui compact blue labeled icon button serp-button"> <i class="file alternate outline icon"></i> pubmed.gov </button> </a>
&laquo; Previous Showing results 1 &mdash; 15 out of 34 results