Filters








1 Hit in 3.4 sec

TRUTHS, INDUCTIVE DEFINITIONS, AND KRIPKE-PLATEK SYSTEMS OVER SET THEORY

KENTARO FUJIMOTO
<span title="">2018</span> <i title="Cambridge University Press (CUP)"> <a target="_blank" rel="noopener" href="https://fatcat.wiki/container/4l7nckgxmbcgvj5vxsioq6qwyq" style="color: black;">Journal of Symbolic Logic (JSL)</a> </i> &nbsp;
AbstractIn this article we study the systems KF and VF of truth over set theory as well as related systems and compare them with the corresponding systems over arithmetic.  ...  These are defined in [20] and [13] for the sake of ordinal analyses of impredicative systems up to KPi and ∆ 1 2 -CA plus bar induction; hence, we here include many redundantly large ordinals for our  ...  We will give ordinal analysis of ID * 1 [[PA]], which then gives analysis of VF * [[PA]] via For each closed L N -term s, I <ξ A (s) is of -type and ¬I <ξ A (s) is of -type.  ... 
<span class="external-identifiers"> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.1017/jsl.2017.77">doi:10.1017/jsl.2017.77</a> <a target="_blank" rel="external noopener" href="https://fatcat.wiki/release/lx5fovnfmnh53nwaih7rpl42ca">fatcat:lx5fovnfmnh53nwaih7rpl42ca</a> </span>
<a target="_blank" rel="noopener" href="https://web.archive.org/web/20200318105336/https://research-information.bris.ac.uk/files/169913356/JSL2018.pdf" title="fulltext PDF download" data-goatcounter-click="serp-fulltext" data-goatcounter-title="serp-fulltext"> <button class="ui simple right pointing dropdown compact black labeled icon button serp-button"> <i class="icon ia-icon"></i> Web Archive [PDF] <div class="menu fulltext-thumbnail"> <img src="https://blobs.fatcat.wiki/thumbnail/pdf/e2/e6/e2e6441e9f837170b11572d3748a61a119900be8.180px.jpg" alt="fulltext thumbnail" loading="lazy"> </div> </button> </a> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.1017/jsl.2017.77"> <button class="ui left aligned compact blue labeled icon button serp-button"> <i class="external alternate icon"></i> cambridge.org </button> </a>