Filters








151 Hits in 0.61 sec

Changes in grey matter induced by training

Bogdan Draganski, Christian Gaser, Volker Busch, Gerhard Schuierer, Ulrich Bogdahn, Arne May
<span title="">2004</span> <i title="Springer Nature"> <a target="_blank" rel="noopener" href="https://fatcat.wiki/container/drfdii35rzaibj3aml5uhvr5xm" style="color: black;">Nature</a> </i> &nbsp;
<span class="external-identifiers"> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.1038/427311a">doi:10.1038/427311a</a> <a target="_blank" rel="external noopener" href="https://www.ncbi.nlm.nih.gov/pubmed/14737157">pmid:14737157</a> <a target="_blank" rel="external noopener" href="https://fatcat.wiki/release/tmm5tvp4g5e5dosddwiczbemwu">fatcat:tmm5tvp4g5e5dosddwiczbemwu</a> </span>
<a target="_blank" rel="noopener" href="https://web.archive.org/web/20170829155646/http://faculty.washington.edu/losterho/juggling_vbm_nature.pdf" title="fulltext PDF download" data-goatcounter-click="serp-fulltext" data-goatcounter-title="serp-fulltext"> <button class="ui simple right pointing dropdown compact black labeled icon button serp-button"> <i class="icon ia-icon"></i> Web Archive [PDF] <div class="menu fulltext-thumbnail"> <img src="https://blobs.fatcat.wiki/thumbnail/pdf/98/66/986692c419c291188b4f6da42fbd9f037d4bcf30.180px.jpg" alt="fulltext thumbnail" loading="lazy"> </div> </button> </a> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.1038/427311a"> <button class="ui left aligned compact blue labeled icon button serp-button"> <i class="external alternate icon"></i> nature.com </button> </a>

Convex Optimized Population Receptive Field (CO-pRF) Mapping [article]

David Slater, Lester Melie-Garcia, Stanislaw Adaszewski, Kendrick Kay, Antoine Lutti, Bogdan Draganski, Ferath Kherif
<span title="2017-08-03">2017</span> <i title="Cold Spring Harbor Laboratory"> bioRxiv </i> &nbsp; <span class="release-stage" >pre-print</span>
Population receptive field (pRF) mapping represents an invaluable non-invasive tool for the study of sensory organization and plasticity within the human brain. Despite the very appealing result that fMRI derived pRF measures agree well with measurements made from other fields of neuroscience, current techniques often require very computationally expensive non-linear optimization procedures to fit the models to the data which are also vulnerable to bias due local minima issues. In this work we
more &raquo; ... resent a general framework for pRF model estimation termed Convex Optimized Population Receptive Field (CO-pRF) mapping and show how the pRF fitting problem can be linearized in order to be solved by extremely fast and efficient algorithms. The framework is general and can be readily applied to a variety of pRF models and measurement schemes. We provide an example of the CO-pRF methodology as applied to a computational neuroimaging approach used to map sensory processes in human visual cortex - the CSS-pRF model. Via simulation and in-vivo fMRI results we demonstrate that the CO-pRF approach achieves robust model fitting even in the presence of noise or reduced data, providing parameter estimates closer to the global optimum across 93% of in-vivo responses as compared to a typical nonlinear optimization procedure. Furthermore the example CO-pRF application substantially reduced model fitting times by a factor of 50. We hope that the availability of such highly accelerated and reliable pRF estimation algorithms will facilitate the spread of pRF techniques to larger imaging cohorts and the future study of neurological disorders and plasticity within the human brain.
<span class="external-identifiers"> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.1101/172189">doi:10.1101/172189</a> <a target="_blank" rel="external noopener" href="https://fatcat.wiki/release/qslincvxarcfrht4yopxadwbrq">fatcat:qslincvxarcfrht4yopxadwbrq</a> </span>
<a target="_blank" rel="noopener" href="https://web.archive.org/web/20180725071636/https://www.biorxiv.org/content/biorxiv/early/2017/08/03/172189.full.pdf" title="fulltext PDF download" data-goatcounter-click="serp-fulltext" data-goatcounter-title="serp-fulltext"> <button class="ui simple right pointing dropdown compact black labeled icon button serp-button"> <i class="icon ia-icon"></i> Web Archive [PDF] <div class="menu fulltext-thumbnail"> <img src="https://blobs.fatcat.wiki/thumbnail/pdf/cf/84/cf84fca7248e08245790689d31d6a3d99888d5a7.180px.jpg" alt="fulltext thumbnail" loading="lazy"> </div> </button> </a> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.1101/172189"> <button class="ui left aligned compact blue labeled icon button serp-button"> <i class="external alternate icon"></i> biorxiv.org </button> </a>

Mapping grip force to motor networks

Ladina Weitnauer, Stefan Frisch, Lester Melie-Garcia, Martin Preisig, Matthias L. Schroeter, Ines Sajfutdinow, Ferath Kherif, Bogdan Draganski
<span title="2021-01-14">2021</span> <i title="Elsevier BV"> <a target="_blank" rel="noopener" href="https://fatcat.wiki/container/sa477uo7lveh7hchpikpixop5u" style="color: black;">NeuroImage</a> </i> &nbsp;
In parallel, we have also built and assessed the covariance based on multi-parameter maps sensitive to myelin, iron, and tissue water content ( Draganski et al., 2011 ) .  ...  Voxel-based quantification (VBQ) We used the previously described method ( Draganski et al., 2011 ) implemented in an in-house software running under SPM12 to calculate the multi-parameter maps.  ... 
<span class="external-identifiers"> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.1016/j.neuroimage.2021.117735">doi:10.1016/j.neuroimage.2021.117735</a> <a target="_blank" rel="external noopener" href="https://www.ncbi.nlm.nih.gov/pubmed/33454401">pmid:33454401</a> <a target="_blank" rel="external noopener" href="https://fatcat.wiki/release/264g7gonarbmfec2lb2kp7np7y">fatcat:264g7gonarbmfec2lb2kp7np7y</a> </span>
<a target="_blank" rel="noopener" href="https://web.archive.org/web/20210715134958/https://serval.unil.ch/resource/serval:BIB_9A913C074FDF.P001/REF.pdf" title="fulltext PDF download" data-goatcounter-click="serp-fulltext" data-goatcounter-title="serp-fulltext"> <button class="ui simple right pointing dropdown compact black labeled icon button serp-button"> <i class="icon ia-icon"></i> Web Archive [PDF] <div class="menu fulltext-thumbnail"> <img src="https://blobs.fatcat.wiki/thumbnail/pdf/c8/1d/c81d9df4a33af15199210e8bb0e72525e8be0a6e.180px.jpg" alt="fulltext thumbnail" loading="lazy"> </div> </button> </a> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.1016/j.neuroimage.2021.117735"> <button class="ui left aligned compact blue labeled icon button serp-button"> <i class="unlock alternate icon" style="background-color: #fb971f;"></i> elsevier.com </button> </a>

Computational anatomy for studying use-dependant brain plasticity

Bogdan Draganski, Ferath Kherif, Antoine Lutti
<span title="2014-06-27">2014</span> <i title="Frontiers Media SA"> <a target="_blank" rel="noopener" href="https://fatcat.wiki/container/adcuz6lgabeidhngmk32v7egkq" style="color: black;">Frontiers in Human Neuroscience</a> </i> &nbsp;
., 2012; Draganski and Kherif, 2013; Thomas and Baker, 2013) .  ...  "nurture"), we aimed to infer causality using a prospective study design with multiple data acquisition time-points (Draganski et al., 2004) .  ... 
<span class="external-identifiers"> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.3389/fnhum.2014.00380">doi:10.3389/fnhum.2014.00380</a> <a target="_blank" rel="external noopener" href="https://www.ncbi.nlm.nih.gov/pubmed/25018716">pmid:25018716</a> <a target="_blank" rel="external noopener" href="https://pubmed.ncbi.nlm.nih.gov/PMC4072968/">pmcid:PMC4072968</a> <a target="_blank" rel="external noopener" href="https://fatcat.wiki/release/zutvf57sxjavfibsae6c6tjpbe">fatcat:zutvf57sxjavfibsae6c6tjpbe</a> </span>
<a target="_blank" rel="noopener" href="https://web.archive.org/web/20170816021431/http://pubman.mpdl.mpg.de/pubman/item/escidoc:2077349/component/escidoc:2077348/Draganski_ComputationalAnatomy.pdf" title="fulltext PDF download" data-goatcounter-click="serp-fulltext" data-goatcounter-title="serp-fulltext"> <button class="ui simple right pointing dropdown compact black labeled icon button serp-button"> <i class="icon ia-icon"></i> Web Archive [PDF] <div class="menu fulltext-thumbnail"> <img src="https://blobs.fatcat.wiki/thumbnail/pdf/ea/7e/ea7eb391f864f423abf73b02de8b622779fe0488.180px.jpg" alt="fulltext thumbnail" loading="lazy"> </div> </button> </a> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.3389/fnhum.2014.00380"> <button class="ui left aligned compact blue labeled icon button serp-button"> <i class="unlock alternate icon" style="background-color: #fb971f;"></i> frontiersin.org </button> </a> <a target="_blank" rel="external noopener" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4072968" title="pubmed link"> <button class="ui compact blue labeled icon button serp-button"> <i class="file alternate outline icon"></i> pubmed.gov </button> </a>

Body Context and Posture Affect Mental Imagery of Hands

Silvio Ionta, David Perruchoud, Bogdan Draganski, Olaf Blanke, Ramesh Balasubramaniam
<span title="2012-03-30">2012</span> <i title="Public Library of Science (PLoS)"> <a target="_blank" rel="noopener" href="https://fatcat.wiki/container/s3gm7274mfe6fcs7e3jterqlri" style="color: black;">PLoS ONE</a> </i> &nbsp;
Different visual stimuli have been shown to recruit different mental imagery strategies. However the role of specific visual stimuli properties related to body context and posture in mental imagery is still under debate. Aiming to dissociate the behavioural correlates of mental processing of visual stimuli characterized by different body context, in the present study we investigated whether the mental rotation of stimuli showing either hands as attached to a body (hands-on-body) or not
more &raquo; ... ly), would be based on different mechanisms. We further examined the effects of postural changes on the mental rotation of both stimuli. Thirty healthy volunteers verbally judged the laterality of rotated hands-only and hands-on-body stimuli presented from the dorsum-or the palm-view, while positioning their hands on their knees (front postural condition) or behind their back (back postural condition). Mental rotation of hands-only, but not of hands-on-body, was modulated by the stimulus view and orientation. Additionally, only the hands-only stimuli were mentally rotated at different speeds according to the postural conditions. This indicates that different stimulus-related mechanisms are recruited in mental rotation by changing the bodily context in which a particular body part is presented. The present data suggest that, with respect to hands-only, mental rotation of hands-on-body is less dependent on biomechanical constraints and proprioceptive input. We interpret our results as evidence for preferential processing of visual-rather than kinestheticbased mechanisms during mental transformation of hands-on-body and hands-only, respectively.
<span class="external-identifiers"> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.1371/journal.pone.0034382">doi:10.1371/journal.pone.0034382</a> <a target="_blank" rel="external noopener" href="https://www.ncbi.nlm.nih.gov/pubmed/22479618">pmid:22479618</a> <a target="_blank" rel="external noopener" href="https://pubmed.ncbi.nlm.nih.gov/PMC3316677/">pmcid:PMC3316677</a> <a target="_blank" rel="external noopener" href="https://fatcat.wiki/release/pdtj52xsujet7aidwhentujti4">fatcat:pdtj52xsujet7aidwhentujti4</a> </span>
<a target="_blank" rel="noopener" href="https://web.archive.org/web/20170817182416/https://infoscience.epfl.ch/record/176018/files/Ionta2012pone.pdf" title="fulltext PDF download" data-goatcounter-click="serp-fulltext" data-goatcounter-title="serp-fulltext"> <button class="ui simple right pointing dropdown compact black labeled icon button serp-button"> <i class="icon ia-icon"></i> Web Archive [PDF] <div class="menu fulltext-thumbnail"> <img src="https://blobs.fatcat.wiki/thumbnail/pdf/70/fe/70fe29faa87b1f9f6e0d62e3c46a4dfa9643dbb4.180px.jpg" alt="fulltext thumbnail" loading="lazy"> </div> </button> </a> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.1371/journal.pone.0034382"> <button class="ui left aligned compact blue labeled icon button serp-button"> <i class="unlock alternate icon" style="background-color: #fb971f;"></i> plos.org </button> </a> <a target="_blank" rel="external noopener" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3316677" title="pubmed link"> <button class="ui compact blue labeled icon button serp-button"> <i class="file alternate outline icon"></i> pubmed.gov </button> </a>

Explainable deep learning models for dementia identification via magnetic resonance imaging

Charles Gallay, Bogdan Draganski, Ferath Kherif
<span title="">2020</span> <i title="Wiley"> <a target="_blank" rel="noopener" href="https://fatcat.wiki/container/skzqffpatvawfgf7uspguqs4yu" style="color: black;">Alzheimer&#39;s &amp; Dementia</a> </i> &nbsp;
Today, to diagnose dementia, clinicians evaluate cognitive tests performed by patients and briefly analyze brain imaging data to look for biomarkers. While valuable information is present in MRI scans, these latter remain challenging to analyze and interpret. Artificial intelligence models have shown promising results to
<span class="external-identifiers"> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.1002/alz.047636">doi:10.1002/alz.047636</a> <a target="_blank" rel="external noopener" href="https://fatcat.wiki/release/lnbt4umw4fbubnxz5gvoq6iewi">fatcat:lnbt4umw4fbubnxz5gvoq6iewi</a> </span>
<a target="_blank" rel="noopener" href="https://web.archive.org/web/20210427205736/https://serval.unil.ch/resource/serval:BIB_9BF0B6F72B7C.P001/REF.pdf" title="fulltext PDF download" data-goatcounter-click="serp-fulltext" data-goatcounter-title="serp-fulltext"> <button class="ui simple right pointing dropdown compact black labeled icon button serp-button"> <i class="icon ia-icon"></i> Web Archive [PDF] <div class="menu fulltext-thumbnail"> <img src="https://blobs.fatcat.wiki/thumbnail/pdf/cf/68/cf6804ca21b7fbc082d7396f996331b17e5db822.180px.jpg" alt="fulltext thumbnail" loading="lazy"> </div> </button> </a> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.1002/alz.047636"> <button class="ui left aligned compact blue labeled icon button serp-button"> <i class="external alternate icon"></i> wiley.com </button> </a>

Planning of Ballistic Movement following Stroke: Insights from the Startle Reflex

Claire Fletcher Honeycutt, Eric Jon Perreault, Bogdan Draganski
<span title="2012-08-30">2012</span> <i title="Public Library of Science (PLoS)"> <a target="_blank" rel="noopener" href="https://fatcat.wiki/container/s3gm7274mfe6fcs7e3jterqlri" style="color: black;">PLoS ONE</a> </i> &nbsp;
Following stroke, reaching movements are slow, segmented, and variable. It is unclear if these deficits result from a poorly constructed movement plan or an inability to voluntarily execute an appropriate plan. The acoustic startle reflex provides a means to initiate a motor plan involuntarily. In the presence of a movement plan, startling acoustic stimulus triggers nonvoluntary early execution of planned movement, a phenomenon known as the startReact response. In unimpaired individuals, the
more &raquo; ... rtReact response is identical to a voluntarily initiated movement, except that it is elicited 30-40 ms. As the startReact response is thought to be mediated by brainstem pathways, we hypothesized that the startReact response is intact in stroke subjects. If startReact is intact, it may be possible to elicit more task-appropriate patterns of muscle activation than can be elicited voluntarily. We found that startReact responses were intact following stroke. Responses were initiated as rapidly as those in unimpaired subjects, and with muscle coordination patterns resembling those seen during unimpaired volitional movements. Results were striking for elbow flexion movements, which demonstrated no significant differences between the startReact responses elicited in our stroke and unimpaired subject groups. The results during planned extension movements were less straightforward for stroke subjects, since the startReact response exhibited task inappropriate activity in the flexors. This inappropriate activity diminished over time. This adaptation suggests that the inappropriate activity was transient in nature and not related to the underlying movement plan. We hypothesize that the task-inappropriate flexor activity during extension results from an inability to suppress the classic startle reflex, which primarily influences flexor muscles and adapts rapidly with successive stimuli. These results indicate that stroke subjects are capable of planning ballistic elbow movements, and that when these planned movements are involuntarily executed they can be as rapid and appropriate as those in unimpaired individuals. Citation: Honeycutt CF, Perreault EJ (2012) Planning of Ballistic Movement following Stroke: Insights from the Startle Reflex. PLoS ONE 7(8): e43097.
<span class="external-identifiers"> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.1371/journal.pone.0043097">doi:10.1371/journal.pone.0043097</a> <a target="_blank" rel="external noopener" href="https://www.ncbi.nlm.nih.gov/pubmed/22952634">pmid:22952634</a> <a target="_blank" rel="external noopener" href="https://pubmed.ncbi.nlm.nih.gov/PMC3431358/">pmcid:PMC3431358</a> <a target="_blank" rel="external noopener" href="https://fatcat.wiki/release/w2jtiimmibdfnb6cicjucpbrgm">fatcat:w2jtiimmibdfnb6cicjucpbrgm</a> </span>
<a target="_blank" rel="noopener" href="https://web.archive.org/web/20171004142440/http://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0043097&amp;type=printable" title="fulltext PDF download" data-goatcounter-click="serp-fulltext" data-goatcounter-title="serp-fulltext"> <button class="ui simple right pointing dropdown compact black labeled icon button serp-button"> <i class="icon ia-icon"></i> Web Archive [PDF] <div class="menu fulltext-thumbnail"> <img src="https://blobs.fatcat.wiki/thumbnail/pdf/94/57/9457ef84de589b56dd14e69df71065b185983576.180px.jpg" alt="fulltext thumbnail" loading="lazy"> </div> </button> </a> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.1371/journal.pone.0043097"> <button class="ui left aligned compact blue labeled icon button serp-button"> <i class="unlock alternate icon" style="background-color: #fb971f;"></i> plos.org </button> </a> <a target="_blank" rel="external noopener" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3431358" title="pubmed link"> <button class="ui compact blue labeled icon button serp-button"> <i class="file alternate outline icon"></i> pubmed.gov </button> </a>

Networks of myelin covariance

Lester Melie-Garcia, David Slater, Anne Ruef, Gretel Sanabria-Diaz, Martin Preisig, Ferath Kherif, Bogdan Draganski, Antoine Lutti
<span title="2017-12-21">2017</span> <i title="Wiley"> <a target="_blank" rel="noopener" href="https://fatcat.wiki/container/wtsn7qcbmrhjppax2iuhu4xj2m" style="color: black;">Human Brain Mapping</a> </i> &nbsp;
., 2014; Draganski et al., 2011) . qMRI also allows the in vivo delineation of the heavily myelinated boundaries of visual (Sereno, Lutti, Weiskopf, & Dick, 2013) and primary auditory (Dick et al.,  ...  on the MRI parameter, Magnetization Transfer (MT) (Helms, Dathe, Kallenberg, & Dechent, 2008b ), which exhibits a high level of specificity toward tissue myelination (Callaghan et al., 2014; Helms, Draganski  ... 
<span class="external-identifiers"> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.1002/hbm.23929">doi:10.1002/hbm.23929</a> <a target="_blank" rel="external noopener" href="https://www.ncbi.nlm.nih.gov/pubmed/29271053">pmid:29271053</a> <a target="_blank" rel="external noopener" href="https://pubmed.ncbi.nlm.nih.gov/PMC5873432/">pmcid:PMC5873432</a> <a target="_blank" rel="external noopener" href="https://fatcat.wiki/release/h4oj3rede5fd5eoxymgnzx4eyi">fatcat:h4oj3rede5fd5eoxymgnzx4eyi</a> </span>
<a target="_blank" rel="noopener" href="https://web.archive.org/web/20190427043347/https://serval.unil.ch/resource/serval:BIB_5937FD78EB29.P001/REF.pdf" title="fulltext PDF download" data-goatcounter-click="serp-fulltext" data-goatcounter-title="serp-fulltext"> <button class="ui simple right pointing dropdown compact black labeled icon button serp-button"> <i class="icon ia-icon"></i> Web Archive [PDF] <div class="menu fulltext-thumbnail"> <img src="https://blobs.fatcat.wiki/thumbnail/pdf/1c/10/1c1088304727bb427fc012d3d6b916ae798838e1.180px.jpg" alt="fulltext thumbnail" loading="lazy"> </div> </button> </a> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.1002/hbm.23929"> <button class="ui left aligned compact blue labeled icon button serp-button"> <i class="unlock alternate icon" style="background-color: #fb971f;"></i> wiley.com </button> </a> <a target="_blank" rel="external noopener" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5873432" title="pubmed link"> <button class="ui compact blue labeled icon button serp-button"> <i class="file alternate outline icon"></i> pubmed.gov </button> </a>

Processing Pathways in Mental Arithmetic—Evidence from Probabilistic Fiber Tracking

Elise Klein, Korbinian Moeller, Volkmar Glauche, Cornelius Weiller, Klaus Willmes, Bogdan Draganski
<span title="2013-01-30">2013</span> <i title="Public Library of Science (PLoS)"> <a target="_blank" rel="noopener" href="https://fatcat.wiki/container/s3gm7274mfe6fcs7e3jterqlri" style="color: black;">PLoS ONE</a> </i> &nbsp;
Numerical cognition is a case of multi-modular and distributed cerebral processing. So far neither the anatomo-functional connections between the cortex areas involved nor their integration into established frameworks such as the differentiation between dorsal and ventral processing streams have been specified. The current study addressed this issue combining a reanalysis of previously published fMRI data with probabilistic fiber tracking data from an independent sample. We aimed at
more &raquo; ... ing neural correlates and connectivity for relatively easy and more difficult addition problems in healthy adults and their association with either rather verbally mediated fact retrieval or magnitude manipulations, respectively. The present data suggest that magnitude-and fact retrieval-related processing seem to be subserved by two largely separate networks, both of them comprising dorsal and ventral connections. Importantly, these networks not only differ in localization of activation but also in the connections between the cortical areas involved. However, it has to be noted that even though seemingly distinct anatomically, these networks operate as a functionally integrated circuit for mental calculation as revealed by a parametric analysis of brain activation.
<span class="external-identifiers"> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.1371/journal.pone.0055455">doi:10.1371/journal.pone.0055455</a> <a target="_blank" rel="external noopener" href="https://www.ncbi.nlm.nih.gov/pubmed/23383194">pmid:23383194</a> <a target="_blank" rel="external noopener" href="https://pubmed.ncbi.nlm.nih.gov/PMC3559478/">pmcid:PMC3559478</a> <a target="_blank" rel="external noopener" href="https://fatcat.wiki/release/7or3wksbsjeajn4pvlmbvnjn4m">fatcat:7or3wksbsjeajn4pvlmbvnjn4m</a> </span>
<a target="_blank" rel="noopener" href="https://web.archive.org/web/20171006024137/http://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0055455&amp;type=printable" title="fulltext PDF download" data-goatcounter-click="serp-fulltext" data-goatcounter-title="serp-fulltext"> <button class="ui simple right pointing dropdown compact black labeled icon button serp-button"> <i class="icon ia-icon"></i> Web Archive [PDF] <div class="menu fulltext-thumbnail"> <img src="https://blobs.fatcat.wiki/thumbnail/pdf/a0/0a/a00adb6114aa0e4ac5e615e0243904611bd0732d.180px.jpg" alt="fulltext thumbnail" loading="lazy"> </div> </button> </a> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.1371/journal.pone.0055455"> <button class="ui left aligned compact blue labeled icon button serp-button"> <i class="unlock alternate icon" style="background-color: #fb971f;"></i> plos.org </button> </a> <a target="_blank" rel="external noopener" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3559478" title="pubmed link"> <button class="ui compact blue labeled icon button serp-button"> <i class="file alternate outline icon"></i> pubmed.gov </button> </a>

In vivo assessment of use-dependent brain plasticity—Beyond the "one trick pony" imaging strategy

Bogdan Draganski, Ferath Kherif
<span title="">2013</span> <i title="Elsevier BV"> <a target="_blank" rel="noopener" href="https://fatcat.wiki/container/sa477uo7lveh7hchpikpixop5u" style="color: black;">NeuroImage</a> </i> &nbsp;
distribution patterns in healthy ageing and suggested a biophysical interpretation, which corroborates with histological studies showing age-dependent iron accumulation and rate of de-/remyelination (Draganski  ... 
<span class="external-identifiers"> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.1016/j.neuroimage.2012.08.058">doi:10.1016/j.neuroimage.2012.08.058</a> <a target="_blank" rel="external noopener" href="https://www.ncbi.nlm.nih.gov/pubmed/22960085">pmid:22960085</a> <a target="_blank" rel="external noopener" href="https://fatcat.wiki/release/u5yvppkv3bd4lbfyhsjgwbl22y">fatcat:u5yvppkv3bd4lbfyhsjgwbl22y</a> </span>
<a target="_blank" rel="noopener" href="https://web.archive.org/web/20150905172100/http://cogns.northwestern.edu/cbmg/3-Draganski%20response.pdf" title="fulltext PDF download" data-goatcounter-click="serp-fulltext" data-goatcounter-title="serp-fulltext"> <button class="ui simple right pointing dropdown compact black labeled icon button serp-button"> <i class="icon ia-icon"></i> Web Archive [PDF] <div class="menu fulltext-thumbnail"> <img src="https://blobs.fatcat.wiki/thumbnail/pdf/88/a9/88a93c1b7556e18fe26e77e9188f261b6555fcaa.180px.jpg" alt="fulltext thumbnail" loading="lazy"> </div> </button> </a> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.1016/j.neuroimage.2012.08.058"> <button class="ui left aligned compact blue labeled icon button serp-button"> <i class="unlock alternate icon" style="background-color: #fb971f;"></i> elsevier.com </button> </a>

Dopamine reverses reward insensitivity in apathy following globus pallidus lesions

Robert Adam, Alexander Leff, Nihal Sinha, Christopher Turner, Paul Bays, Bogdan Draganski, Masud Husain
<span title="">2013</span> <i title="Elsevier BV"> <a target="_blank" rel="noopener" href="https://fatcat.wiki/container/cshteacz2vgx5oalrhmhbchkcy" style="color: black;">Cortex</a> </i> &nbsp;
Probabilistic diffusion tractography (Fig. 2 ) was used to examine the topography of pallidal connections to three cortical regions (Draganski et al., 2008) .  ...  In addition, to establish which cortical regions were most likely to be deafferented, diffusion-weighted data from 12 healthy aged-matched male subjects following the algorithm of Draganski et al. (2008  ... 
<span class="external-identifiers"> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.1016/j.cortex.2012.04.013">doi:10.1016/j.cortex.2012.04.013</a> <a target="_blank" rel="external noopener" href="https://www.ncbi.nlm.nih.gov/pubmed/22721958">pmid:22721958</a> <a target="_blank" rel="external noopener" href="https://pubmed.ncbi.nlm.nih.gov/PMC3639369/">pmcid:PMC3639369</a> <a target="_blank" rel="external noopener" href="https://fatcat.wiki/release/jfa5id3uwzgplgrpbo43hlrtsi">fatcat:jfa5id3uwzgplgrpbo43hlrtsi</a> </span>
<a target="_blank" rel="noopener" href="https://web.archive.org/web/20190415093826/https://core.ac.uk/download/pdf/82680884.pdf" title="fulltext PDF download" data-goatcounter-click="serp-fulltext" data-goatcounter-title="serp-fulltext"> <button class="ui simple right pointing dropdown compact black labeled icon button serp-button"> <i class="icon ia-icon"></i> Web Archive [PDF] <div class="menu fulltext-thumbnail"> <img src="https://blobs.fatcat.wiki/thumbnail/pdf/da/e1/dae1bf89b46313ca2826bc1b9087c5165bfbfe89.180px.jpg" alt="fulltext thumbnail" loading="lazy"> </div> </button> </a> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.1016/j.cortex.2012.04.013"> <button class="ui left aligned compact blue labeled icon button serp-button"> <i class="unlock alternate icon" style="background-color: #fb971f;"></i> elsevier.com </button> </a> <a target="_blank" rel="external noopener" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3639369" title="pubmed link"> <button class="ui compact blue labeled icon button serp-button"> <i class="file alternate outline icon"></i> pubmed.gov </button> </a>

Resting State Functional Connectivity in Patients with Chronic Hallucinations

Iris E. Sommer, Mareike Clos, Anne Lotte Meijering, Kelly M. J. Diederen, Simon B. Eickhoff, Bogdan Draganski
<span title="2012-09-06">2012</span> <i title="Public Library of Science (PLoS)"> <a target="_blank" rel="noopener" href="https://fatcat.wiki/container/s3gm7274mfe6fcs7e3jterqlri" style="color: black;">PLoS ONE</a> </i> &nbsp;
Auditory verbal hallucinations (AVH) are not only among the most common but also one of the most distressing symptoms of schizophrenia. Despite elaborate research, the underlying brain mechanisms are as yet elusive. Functional MRI studies have associated the experience of AVH with activation of bilateral language-related areas, in particular the right inferior frontal gyrus (rIFG) and the left superior temporal gyrus (lSTG). While these findings helped to understand the neural underpinnings of
more &raquo; ... earing voices, they provide little information about possible brain mechanisms that predispose a person to experience AVH, i.e. the traits to hallucinate. In this study, we compared resting state connectivity between 49 psychotic patients with chronic AVH and 49 matched controls using the rIFG and the lSTG as seed regions, to identify functional brain systems underlying the predisposition to hallucinate. The right parahippocampal gyrus showed increased connectivity with the rIFG in patients as compared to controls. Reduced connectivity with the rIFG in patients was found for the right dorsolateral prefrontal cortex. Reduced connectivity with the lSTG in patients was identified in the left frontal operculum as well as the parietal opercular area. Connectivity between the lSTG and the left hippocampus was also reduced in patients and showed a negative correlation with the severity of hallucinations. Concluding, we found aberrant connectivity between the seed regions and medial temporal lobe structures which have a prominent role in memory retrieval. Moreover, we found decreased connectivity between language-related areas, indicating aberrant integration in this system potentially including corollary discharge mechanisms.
<span class="external-identifiers"> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.1371/journal.pone.0043516">doi:10.1371/journal.pone.0043516</a> <a target="_blank" rel="external noopener" href="https://www.ncbi.nlm.nih.gov/pubmed/22970130">pmid:22970130</a> <a target="_blank" rel="external noopener" href="https://pubmed.ncbi.nlm.nih.gov/PMC3435327/">pmcid:PMC3435327</a> <a target="_blank" rel="external noopener" href="https://fatcat.wiki/release/l564pqgcgjac7dimyvrfxvcc4q">fatcat:l564pqgcgjac7dimyvrfxvcc4q</a> </span>
<a target="_blank" rel="noopener" href="https://web.archive.org/web/20171004153953/http://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0043516&amp;type=printable" title="fulltext PDF download" data-goatcounter-click="serp-fulltext" data-goatcounter-title="serp-fulltext"> <button class="ui simple right pointing dropdown compact black labeled icon button serp-button"> <i class="icon ia-icon"></i> Web Archive [PDF] <div class="menu fulltext-thumbnail"> <img src="https://blobs.fatcat.wiki/thumbnail/pdf/9d/b7/9db73c51a0382c93cf79309bf264347536086987.180px.jpg" alt="fulltext thumbnail" loading="lazy"> </div> </button> </a> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.1371/journal.pone.0043516"> <button class="ui left aligned compact blue labeled icon button serp-button"> <i class="unlock alternate icon" style="background-color: #fb971f;"></i> plos.org </button> </a> <a target="_blank" rel="external noopener" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3435327" title="pubmed link"> <button class="ui compact blue labeled icon button serp-button"> <i class="file alternate outline icon"></i> pubmed.gov </button> </a>

Brain networks modulated by subthalamic nucleus deep brain stimulation

Ettore A. Accolla, Maria Herrojo Ruiz, Andreas Horn, Gerd-Helge Schneider, Tanja Schmitz-Hübsch, Bogdan Draganski, Andrea A. Kühn
<span title="2016-07-13">2016</span> <i title="Oxford University Press (OUP)"> <a target="_blank" rel="noopener" href="https://fatcat.wiki/container/3yly6om4ynhcta4fdjenhrdk5y" style="color: black;">Brain</a> </i> &nbsp;
time TR = 23.7 ms, flip angle α = 6°), T1 weighting (T1w; TR/α = 18.7 ms/20°), and magnetization transfer weighting (MTw; TR/α = 23.7 ms/6°) contrast according to the previously published protocol (Draganski  ... 
<span class="external-identifiers"> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.1093/brain/aww182">doi:10.1093/brain/aww182</a> <a target="_blank" rel="external noopener" href="https://www.ncbi.nlm.nih.gov/pubmed/27412387">pmid:27412387</a> <a target="_blank" rel="external noopener" href="https://fatcat.wiki/release/fmotnzo4gvfkdn4dxk3lcf5dim">fatcat:fmotnzo4gvfkdn4dxk3lcf5dim</a> </span>
<a target="_blank" rel="noopener" href="https://web.archive.org/web/20180720205830/http://research.gold.ac.uk/18784/1/Manuscript_Accolla_2016_final.pdf" title="fulltext PDF download" data-goatcounter-click="serp-fulltext" data-goatcounter-title="serp-fulltext"> <button class="ui simple right pointing dropdown compact black labeled icon button serp-button"> <i class="icon ia-icon"></i> Web Archive [PDF] <div class="menu fulltext-thumbnail"> <img src="https://blobs.fatcat.wiki/thumbnail/pdf/ca/29/ca299c10ecf4c5cf71f2378e1d33a99ca346ce50.180px.jpg" alt="fulltext thumbnail" loading="lazy"> </div> </button> </a> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.1093/brain/aww182"> <button class="ui left aligned compact blue labeled icon button serp-button"> <i class="external alternate icon"></i> oup.com </button> </a>

Functional compensation of motor function in pre-symptomatic Huntington's disease

Stefan Klöppel, Bogdan Draganski, Hartwig R. Siebner, Sarah J. Tabrizi, Cornelius Weiller, Richard S. J. Frackowiak
<span title="2009-04-15">2009</span> <i title="Oxford University Press (OUP)"> <a target="_blank" rel="noopener" href="https://fatcat.wiki/container/3yly6om4ynhcta4fdjenhrdk5y" style="color: black;">Brain</a> </i> &nbsp;
Involuntary choreiform movements are a clinical hallmark of Huntington's disease. Studies in clinically affected patients suggest a shift of motor activations to parietal cortices in response to progressive neurodegeneration. Here, we studied pre-symptomatic gene carriers to examine the compensatory mechanisms that underlie the phenomenon of retained motor function in the presence of degenerative change. Fifteen pre-symptomatic gene carriers and 12 matched controls performed button presses
more &raquo; ... by a metronome at either 0.5 or 2 Hz with four fingers of the right hand whilst being scanned with functional magnetic resonance imaging. Subjects pressed buttons either in the order of a previously learnt 10-item finger sequence, from left to right, or kept still. Error rates ranged from 2% to 7% in the pre-symptomatic gene carriers and from 0.5% to 4% in controls, depending on the condition. No significant difference in task performance was found between groups for any of the conditions. Activations in the supplementary motor area (SMA) and superior parietal lobe differed with gene status. Compared with healthy controls, gene carriers showed greater activations of left caudal SMA with all movement conditions. Activations correlated with increasing speed of movement were greater the closer the gene carriers were to estimated clinical diagnosis, defined by the onset of unequivocal motor signs. Activations associated with increased movement complexity (i.e. with the pre-learnt 10-item sequence) decreased in the rostral SMA with nearing diagnostic onset. The left superior parietal lobe showed reduced activation with increased movement complexity in gene carriers compared with controls, and in the right superior parietal lobe showed greater activations with all but the most demanding movements. We identified a complex pattern of motor compensation in pre-symptomatic gene carriers. The results show that preclinical compensation goes beyond a simple shift of activity from premotor to parietal regions involving multiple compensatory mechanisms in executive and cognitive motor areas. Critically, the pattern of motor compensation is flexible depending on the actual task demands on motor control. Abbreviations: fMRI = functional MRI; M1 = primary sensorimotor cortex; PET = positron emission tomography; PMd = dorsal premotor cortex; ROIs = regions of interests; rTMS = repetitive transcranial magnetic stimulation; SMA = supplementary motor area; SPL = superior parietal lobe; UHDRS = Unified Huntington's Disease Rating Scale
<span class="external-identifiers"> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.1093/brain/awp081">doi:10.1093/brain/awp081</a> <a target="_blank" rel="external noopener" href="https://www.ncbi.nlm.nih.gov/pubmed/19369489">pmid:19369489</a> <a target="_blank" rel="external noopener" href="https://pubmed.ncbi.nlm.nih.gov/PMC2685920/">pmcid:PMC2685920</a> <a target="_blank" rel="external noopener" href="https://fatcat.wiki/release/jzirsvzaerdlxbbxkh5cxiogea">fatcat:jzirsvzaerdlxbbxkh5cxiogea</a> </span>
<a target="_blank" rel="noopener" href="https://web.archive.org/web/20190303120513/http://pdfs.semanticscholar.org/b540/4651aef3af33645017ccd3f790d0efed26d7.pdf" title="fulltext PDF download" data-goatcounter-click="serp-fulltext" data-goatcounter-title="serp-fulltext"> <button class="ui simple right pointing dropdown compact black labeled icon button serp-button"> <i class="icon ia-icon"></i> Web Archive [PDF] <div class="menu fulltext-thumbnail"> <img src="https://blobs.fatcat.wiki/thumbnail/pdf/b5/40/b5404651aef3af33645017ccd3f790d0efed26d7.180px.jpg" alt="fulltext thumbnail" loading="lazy"> </div> </button> </a> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.1093/brain/awp081"> <button class="ui left aligned compact blue labeled icon button serp-button"> <i class="external alternate icon"></i> oup.com </button> </a> <a target="_blank" rel="external noopener" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2685920" title="pubmed link"> <button class="ui compact blue labeled icon button serp-button"> <i class="file alternate outline icon"></i> pubmed.gov </button> </a>

A comparison between voxel-based cortical thickness and voxel-based morphometry in normal aging

Chloe Hutton, Bogdan Draganski, John Ashburner, Nikolaus Weiskopf
<span title="">2009</span> <i title="Elsevier BV"> <a target="_blank" rel="noopener" href="https://fatcat.wiki/container/sa477uo7lveh7hchpikpixop5u" style="color: black;">NeuroImage</a> </i> &nbsp;
Further, longitudinal VBM studies have demonstrated traininginduced structural changes in the adult human brain (Draganski et al., 2004; Draganski et al., 2006) .  ...  Alzheimers disease, Huntington disease Muhlau et al., 2007) or primary (idiopathic) disorders with the assumption of normal brain morphology, e.g. idiopathic cervical dystonia (Draganski et al., 2003  ... 
<span class="external-identifiers"> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.1016/j.neuroimage.2009.06.043">doi:10.1016/j.neuroimage.2009.06.043</a> <a target="_blank" rel="external noopener" href="https://www.ncbi.nlm.nih.gov/pubmed/19559801">pmid:19559801</a> <a target="_blank" rel="external noopener" href="https://pubmed.ncbi.nlm.nih.gov/PMC2741580/">pmcid:PMC2741580</a> <a target="_blank" rel="external noopener" href="https://fatcat.wiki/release/5rmqz6ol7zhx7nbpsvbnrmhcia">fatcat:5rmqz6ol7zhx7nbpsvbnrmhcia</a> </span>
<a target="_blank" rel="noopener" href="https://web.archive.org/web/20190412141044/https://core.ac.uk/download/pdf/82321592.pdf" title="fulltext PDF download" data-goatcounter-click="serp-fulltext" data-goatcounter-title="serp-fulltext"> <button class="ui simple right pointing dropdown compact black labeled icon button serp-button"> <i class="icon ia-icon"></i> Web Archive [PDF] <div class="menu fulltext-thumbnail"> <img src="https://blobs.fatcat.wiki/thumbnail/pdf/a2/08/a208120fde3a76397c612ca55e6fe6ca8032025a.180px.jpg" alt="fulltext thumbnail" loading="lazy"> </div> </button> </a> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.1016/j.neuroimage.2009.06.043"> <button class="ui left aligned compact blue labeled icon button serp-button"> <i class="unlock alternate icon" style="background-color: #fb971f;"></i> elsevier.com </button> </a> <a target="_blank" rel="external noopener" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2741580" title="pubmed link"> <button class="ui compact blue labeled icon button serp-button"> <i class="file alternate outline icon"></i> pubmed.gov </button> </a>
&laquo; Previous Showing results 1 &mdash; 15 out of 151 results