Filters








240,369 Hits in 5.3 sec

A Graph-Based Approach to Feature Selection [chapter]

Zhihong Zhang, Edwin R. Hancock
<span title="">2011</span> <i title="Springer Berlin Heidelberg"> <a target="_blank" rel="noopener" href="https://fatcat.wiki/container/2w3awgokqne6te4nvlofavy5a4" style="color: black;">Lecture Notes in Computer Science</a> </i> &nbsp;
Graph-based Refinement of feature-set  Characterise relevance of feature vectors using graph-based representation of mutual information.  Cluster feature vectors F into dominant sets using mutual information  ...  a combinational concept in graph theory that generalizes the notion of a maximal complete subgraph from simple graphs to edge-weighted graphs.  ...  Conclusion  We have presented a new graph theoretic approach to feature selection.  Dominant-set clustering used to precluster the most informative feature vectors.  ... 
<span class="external-identifiers"> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.1007/978-3-642-20844-7_21">doi:10.1007/978-3-642-20844-7_21</a> <a target="_blank" rel="external noopener" href="https://fatcat.wiki/release/mgc6jcxkfjetvhgsjf2lnzk7pi">fatcat:mgc6jcxkfjetvhgsjf2lnzk7pi</a> </span>
<a target="_blank" rel="noopener" href="https://web.archive.org/web/20190302102024/http://pdfs.semanticscholar.org/9a6c/3f4b3bdcd3def0f2b5aa29f34b913bea89aa.pdf" title="fulltext PDF download" data-goatcounter-click="serp-fulltext" data-goatcounter-title="serp-fulltext"> <button class="ui simple right pointing dropdown compact black labeled icon button serp-button"> <i class="icon ia-icon"></i> Web Archive [PDF] <div class="menu fulltext-thumbnail"> <img src="https://blobs.fatcat.wiki/thumbnail/pdf/9a/6c/9a6c3f4b3bdcd3def0f2b5aa29f34b913bea89aa.180px.jpg" alt="fulltext thumbnail" loading="lazy"> </div> </button> </a> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.1007/978-3-642-20844-7_21"> <button class="ui left aligned compact blue labeled icon button serp-button"> <i class="external alternate icon"></i> springer.com </button> </a>

Large-scale Image Geo-Localization Using Dominant Sets [article]

Eyasu Zemene, Yonatan Tariku, Haroon Idrees, Andrea Prati, Marcello Pelillo, Mubarak Shah
<span title="2017-09-14">2017</span> <i > arXiv </i> &nbsp; <span class="release-stage" >pre-print</span>
This paper presents a new approach for the challenging problem of geo-locating an image using image matching in a structured database of city-wide reference images with known GPS coordinates.  ...  Next, we cluster the features from reference images using Dominant Set clustering, which affords several advantages over existing approaches.  ...  Multiple Feature Matching Using Dominant Sets The Dominant Set Framework The dominant set framework is a pairwise clustering approach [41] , based on the notion of a dominant set, which can be seen  ... 
<span class="external-identifiers"> <a target="_blank" rel="external noopener" href="https://arxiv.org/abs/1702.01238v3">arXiv:1702.01238v3</a> <a target="_blank" rel="external noopener" href="https://fatcat.wiki/release/zq5a2nqywfc67j6uw2ka2zvcpa">fatcat:zq5a2nqywfc67j6uw2ka2zvcpa</a> </span>
<a target="_blank" rel="noopener" href="https://web.archive.org/web/20191014000138/https://arxiv.org/pdf/1702.01238v3.pdf" title="fulltext PDF download" data-goatcounter-click="serp-fulltext" data-goatcounter-title="serp-fulltext"> <button class="ui simple right pointing dropdown compact black labeled icon button serp-button"> <i class="icon ia-icon"></i> Web Archive [PDF] <div class="menu fulltext-thumbnail"> <img src="https://blobs.fatcat.wiki/thumbnail/pdf/dd/6e/dd6e4da71cb1f671f28a3684acf31ad887bc2aac.180px.jpg" alt="fulltext thumbnail" loading="lazy"> </div> </button> </a> <a target="_blank" rel="external noopener" href="https://arxiv.org/abs/1702.01238v3" title="arxiv.org access"> <button class="ui compact blue labeled icon button serp-button"> <i class="file alternate outline icon"></i> arxiv.org </button> </a>

Facility Recommendation System Using Domination Set Theory in Graph

<span title="2019-07-10">2019</span> <i title="Blue Eyes Intelligence Engineering and Sciences Engineering and Sciences Publication - BEIESP"> <a target="_blank" rel="noopener" href="https://fatcat.wiki/container/cj3bm7tgcffurfop7xzswxuks4" style="color: black;">VOLUME-8 ISSUE-10, AUGUST 2019, REGULAR ISSUE</a> </i> &nbsp;
With the help of GPS based services the analysis of locations and traffic which is vital input for the problem of facility location.  ...  The algorithm uses domination set and k-means clustering algorithm to choose the facility and its corresponding cluster in the region.  ...  Domination set theory is an approach which can be applied to the geographical region to choose the right location for various facilities based on the algorithm.  ... 
<span class="external-identifiers"> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.35940/ijitee.h7419.078919">doi:10.35940/ijitee.h7419.078919</a> <a target="_blank" rel="external noopener" href="https://fatcat.wiki/release/qref3yog7bbk5p7cifqkfevnni">fatcat:qref3yog7bbk5p7cifqkfevnni</a> </span>
<a target="_blank" rel="noopener" href="https://web.archive.org/web/20220303061637/https://www.ijitee.org/wp-content/uploads/papers/v8i9/H7419068819.pdf" title="fulltext PDF download" data-goatcounter-click="serp-fulltext" data-goatcounter-title="serp-fulltext"> <button class="ui simple right pointing dropdown compact black labeled icon button serp-button"> <i class="icon ia-icon"></i> Web Archive [PDF] <div class="menu fulltext-thumbnail"> <img src="https://blobs.fatcat.wiki/thumbnail/pdf/f0/3d/f03da1c3370ccab5a91d6032fd6f5c96dd28b09a.180px.jpg" alt="fulltext thumbnail" loading="lazy"> </div> </button> </a> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.35940/ijitee.h7419.078919"> <button class="ui left aligned compact blue labeled icon button serp-button"> <i class="external alternate icon"></i> Publisher / doi.org </button> </a>

Location- and density-based hierarchical clustering using similarity analysis

P. Bajcsy, N. Ahuja
<span title="">1998</span> <i title="Institute of Electrical and Electronics Engineers (IEEE)"> <a target="_blank" rel="noopener" href="https://fatcat.wiki/container/3px634ph3vhrtmtuip6xznraqi" style="color: black;">IEEE Transactions on Pattern Analysis and Machine Intelligence</a> </i> &nbsp;
This paper presents a new approach to hierarchical clustering of point patterns. Two algorithms for hierarchical location-and densitybased clustering are developed.  ...  The approach is applied to a two-step texture analysis, where points represent centroid and average color of the regions in image segmentation.  ...  Links between all pairs of points create a complete graph according to the notation in graph theory. texture analysis consists of two sets of features (e.g., centroid location and average color of primitives  ... 
<span class="external-identifiers"> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.1109/34.713365">doi:10.1109/34.713365</a> <a target="_blank" rel="external noopener" href="https://fatcat.wiki/release/nojtomupzbcy3mblrg5k5tycom">fatcat:nojtomupzbcy3mblrg5k5tycom</a> </span>
<a target="_blank" rel="noopener" href="https://web.archive.org/web/20190307011131/http://pdfs.semanticscholar.org/d83a/f8ba0e69331ddfbbecdc3dd4f391a7391e7f.pdf" title="fulltext PDF download" data-goatcounter-click="serp-fulltext" data-goatcounter-title="serp-fulltext"> <button class="ui simple right pointing dropdown compact black labeled icon button serp-button"> <i class="icon ia-icon"></i> Web Archive [PDF] <div class="menu fulltext-thumbnail"> <img src="https://blobs.fatcat.wiki/thumbnail/pdf/d8/3a/d83af8ba0e69331ddfbbecdc3dd4f391a7391e7f.180px.jpg" alt="fulltext thumbnail" loading="lazy"> </div> </button> </a> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.1109/34.713365"> <button class="ui left aligned compact blue labeled icon button serp-button"> <i class="external alternate icon"></i> ieee.com </button> </a>

Learning Edge-Specific Kernel Functions For Pairwise Graph Matching

Michael Donoser, Martin Urschler, Horst Bischof
<span title="">2012</span> <i title="British Machine Vision Association"> <a target="_blank" rel="noopener" href="https://fatcat.wiki/container/6bfo5625nvdfvbgyf7ldi5wmfe" style="color: black;">Procedings of the British Machine Vision Conference 2012</a> </i> &nbsp;
Experiments on automatically aligning a set of faces and feature-point based localization of category instances demonstrate the value of the proposed method.  ...  Assuming that the setting of graph matching is a priori known, the learned kernel functions allow to significantly improve results in comparison to general graph matching.  ...  Based on the learned model we can define pairwise kernel functions which are then used to solve a standard pairwise graph matching problem between a reference graph and a query graph in an improved manner  ... 
<span class="external-identifiers"> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.5244/c.26.17">doi:10.5244/c.26.17</a> <a target="_blank" rel="external noopener" href="https://dblp.org/rec/conf/bmvc/DonoserUB12.html">dblp:conf/bmvc/DonoserUB12</a> <a target="_blank" rel="external noopener" href="https://fatcat.wiki/release/ourx374hhrhn7ogkqarmwerr3e">fatcat:ourx374hhrhn7ogkqarmwerr3e</a> </span>
<a target="_blank" rel="noopener" href="https://web.archive.org/web/20170809142533/http://www.bmva.org/bmvc/2012/BMVC/paper017/paper017.pdf" title="fulltext PDF download" data-goatcounter-click="serp-fulltext" data-goatcounter-title="serp-fulltext"> <button class="ui simple right pointing dropdown compact black labeled icon button serp-button"> <i class="icon ia-icon"></i> Web Archive [PDF] <div class="menu fulltext-thumbnail"> <img src="https://blobs.fatcat.wiki/thumbnail/pdf/c8/a0/c8a07c7104ad18213340867e85074e12aa115870.180px.jpg" alt="fulltext thumbnail" loading="lazy"> </div> </button> </a> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.5244/c.26.17"> <button class="ui left aligned compact blue labeled icon button serp-button"> <i class="external alternate icon"></i> Publisher / doi.org </button> </a>

Graph Grammar Based Object Detecting and Tracking

Yuqing Song, Dongpeng Yue, Shaoqing Mo
<span title="2013-03-31">2013</span> <i title="The Intelligent Networks and Systems Society"> <a target="_blank" rel="noopener" href="https://fatcat.wiki/container/hxhhpqr6nrfs5eblsflinrd2wa" style="color: black;">International Journal of Intelligent Engineering and Systems</a> </i> &nbsp;
In this paper we introduce a graph grammar based method to fuse the low level features and apply them to object detecting and tracking.  ...  Our tracking algorithm consists of two phases: key points tracking and tracking by graph grammar rules. The key points are computed by using salient level set components.  ...  In this paper a graph grammar based method is used for licensing plate recognition. In our approach, we first employ a level set based LPL process [30] to find candidate plate locations.  ... 
<span class="external-identifiers"> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.22266/ijies2013.0331.02">doi:10.22266/ijies2013.0331.02</a> <a target="_blank" rel="external noopener" href="https://fatcat.wiki/release/4rdyzuuvlbb3fhabcotdwze3ne">fatcat:4rdyzuuvlbb3fhabcotdwze3ne</a> </span>
<a target="_blank" rel="noopener" href="https://web.archive.org/web/20180602013406/http://www.inass.org/share/2013033102.pdf" title="fulltext PDF download" data-goatcounter-click="serp-fulltext" data-goatcounter-title="serp-fulltext"> <button class="ui simple right pointing dropdown compact black labeled icon button serp-button"> <i class="icon ia-icon"></i> Web Archive [PDF] <div class="menu fulltext-thumbnail"> <img src="https://blobs.fatcat.wiki/thumbnail/pdf/3d/22/3d22aba7be625a0a90a9f8ba25b29f4c46b35fe2.180px.jpg" alt="fulltext thumbnail" loading="lazy"> </div> </button> </a> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.22266/ijies2013.0331.02"> <button class="ui left aligned compact blue labeled icon button serp-button"> <i class="external alternate icon"></i> Publisher / doi.org </button> </a>

A Graph Automorphic Approach for Placement and Sizing of Charging Stations in EV Network Considering Traffic

H. Parastvand, V. Moghaddam, O. Bass, M. A. S. Masoum, A. Chapman, S. Lachowicz
<span title="">2020</span> <i title="Institute of Electrical and Electronics Engineers (IEEE)"> <a target="_blank" rel="noopener" href="https://fatcat.wiki/container/a5kk7qbvf5faxmrimylu5xx4zu" style="color: black;">IEEE Transactions on Smart Grid</a> </i> &nbsp;
This paper proposes a novel graph-based approach with automorphic grouping for the modelling, synthesis, and analysis of electric vehicle (EV) networks with charging stations (CSs) that considers the impacts  ...  The EV charge demands are modeled by a graph where nodes are positioned at potential locations for CSs, and edges represent traffic flow between the nodes.  ...  The proposed graph-based EV model facilitates addressing the EV network problems using various analytical approaches originated from control theories.  ... 
<span class="external-identifiers"> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.1109/tsg.2020.2984037">doi:10.1109/tsg.2020.2984037</a> <a target="_blank" rel="external noopener" href="https://fatcat.wiki/release/p2npnhttoraubago3qqlqxpu2y">fatcat:p2npnhttoraubago3qqlqxpu2y</a> </span>
<a target="_blank" rel="noopener" href="https://web.archive.org/web/20201108151150/https://ieeexplore.ieee.org/ielx7/5165411/9172159/09056830.pdf" title="fulltext PDF download" data-goatcounter-click="serp-fulltext" data-goatcounter-title="serp-fulltext"> <button class="ui simple right pointing dropdown compact black labeled icon button serp-button"> <i class="icon ia-icon"></i> Web Archive [PDF] <div class="menu fulltext-thumbnail"> <img src="https://blobs.fatcat.wiki/thumbnail/pdf/d2/40/d240b5602fc994fee97a369278af7539139d852c.180px.jpg" alt="fulltext thumbnail" loading="lazy"> </div> </button> </a> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.1109/tsg.2020.2984037"> <button class="ui left aligned compact blue labeled icon button serp-button"> <i class="external alternate icon"></i> ieee.com </button> </a>

Road Accident Proneness Indicator Based On Time, Weather And Location Specificity Using Graph Neural Networks [article]

Srikanth Chandar, Anish Reddy, Muvazima Mansoor, Suresh Jamadagni
<span title="2020-10-24">2020</span> <i > arXiv </i> &nbsp; <span class="release-stage" >pre-print</span>
We implement a novel approach to predict the Safety Index of a road-based on its TWL specificity by using a Graph Neural Network (GNN) architecture.  ...  We validated our approach on a data set containing the alert locations along the routes of inter-state buses.  ...  We extend our thanks to PES University, who provided us a platform that helped us to team up and pursue this project. We also thank Dr. Asif Qamar, for his help in giving us certain key insights.  ... 
<span class="external-identifiers"> <a target="_blank" rel="external noopener" href="https://arxiv.org/abs/2010.12953v1">arXiv:2010.12953v1</a> <a target="_blank" rel="external noopener" href="https://fatcat.wiki/release/z5yndjnlmfftnhfw3me22rqbnm">fatcat:z5yndjnlmfftnhfw3me22rqbnm</a> </span>
<a target="_blank" rel="noopener" href="https://web.archive.org/web/20201030132405/https://arxiv.org/pdf/2010.12953v1.pdf" title="fulltext PDF download" data-goatcounter-click="serp-fulltext" data-goatcounter-title="serp-fulltext"> <button class="ui simple right pointing dropdown compact black labeled icon button serp-button"> <i class="icon ia-icon"></i> Web Archive [PDF] <div class="menu fulltext-thumbnail"> <img src="https://blobs.fatcat.wiki/thumbnail/pdf/56/9e/569e2b511ed344b8d8acac55b7a3ed0d17948a43.180px.jpg" alt="fulltext thumbnail" loading="lazy"> </div> </button> </a> <a target="_blank" rel="external noopener" href="https://arxiv.org/abs/2010.12953v1" title="arxiv.org access"> <button class="ui compact blue labeled icon button serp-button"> <i class="file alternate outline icon"></i> arxiv.org </button> </a>

Best wavelength selection for Gabor wavelet using GA for EBGM algorithm

Mohamad Hoseyn Sigari
<span title="">2007</span> <i title="IEEE"> 2007 International Conference on Machine Vision </i> &nbsp;
In this paper a new method for optimization of Elastic Bunch Graph Matching (EBGM) algorithm in frontal face recognition is presented.  ...  In EBGM algorithm, some pre-determined wavelength of Gabor wavelet is used to extract features from face image.  ...  Hybrid method such as human perception system, uses both template based and feature based approaches to recognize facial images.  ... 
<span class="external-identifiers"> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.1109/icmv.2007.4469269">doi:10.1109/icmv.2007.4469269</a> <a target="_blank" rel="external noopener" href="https://fatcat.wiki/release/6hqoi6cffnfp7d3agrveqdnnym">fatcat:6hqoi6cffnfp7d3agrveqdnnym</a> </span>
<a target="_blank" rel="noopener" href="https://web.archive.org/web/20180502055110/http://www.iaeng.org/publication/IMECS2008/IMECS2008_pp623-626.pdf" title="fulltext PDF download" data-goatcounter-click="serp-fulltext" data-goatcounter-title="serp-fulltext"> <button class="ui simple right pointing dropdown compact black labeled icon button serp-button"> <i class="icon ia-icon"></i> Web Archive [PDF] <div class="menu fulltext-thumbnail"> <img src="https://blobs.fatcat.wiki/thumbnail/pdf/ea/8d/ea8d6b6ec5cc9adf902acb1204a246f9c59337fe.180px.jpg" alt="fulltext thumbnail" loading="lazy"> </div> </button> </a> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.1109/icmv.2007.4469269"> <button class="ui left aligned compact blue labeled icon button serp-button"> <i class="external alternate icon"></i> ieee.com </button> </a>

A New Graph Drawing Scheme for Social Network

Eric Ke Wang, Futai Zou
<span title="">2014</span> <i title="Hindawi Limited"> <a target="_blank" rel="noopener" href="https://fatcat.wiki/container/nxzqpsogkbe55mjq33syzghf2e" style="color: black;">The Scientific World Journal</a> </i> &nbsp;
In this paper, we study the graph layout algorithms and propose a new graph drawing scheme combining multilevel and single-level drawing approaches, including the graph division method based on communities  ...  and refining approach based on partitioning strategy.  ...  [21] proposed a multilevel approach based on topological feature.  ... 
<span class="external-identifiers"> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.1155/2014/930314">doi:10.1155/2014/930314</a> <a target="_blank" rel="external noopener" href="https://www.ncbi.nlm.nih.gov/pubmed/25157378">pmid:25157378</a> <a target="_blank" rel="external noopener" href="https://pubmed.ncbi.nlm.nih.gov/PMC4124209/">pmcid:PMC4124209</a> <a target="_blank" rel="external noopener" href="https://fatcat.wiki/release/dmp66ksmjveflj3kdowuyhglmu">fatcat:dmp66ksmjveflj3kdowuyhglmu</a> </span>
<a target="_blank" rel="noopener" href="https://web.archive.org/web/20190503210052/http://downloads.hindawi.com/journals/tswj/2014/930314.pdf" title="fulltext PDF download" data-goatcounter-click="serp-fulltext" data-goatcounter-title="serp-fulltext"> <button class="ui simple right pointing dropdown compact black labeled icon button serp-button"> <i class="icon ia-icon"></i> Web Archive [PDF] <div class="menu fulltext-thumbnail"> <img src="https://blobs.fatcat.wiki/thumbnail/pdf/69/ea/69ea01bce95dd848fa89e6a22468dcbc3b8f814c.180px.jpg" alt="fulltext thumbnail" loading="lazy"> </div> </button> </a> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.1155/2014/930314"> <button class="ui left aligned compact blue labeled icon button serp-button"> <i class="unlock alternate icon" style="background-color: #fb971f;"></i> hindawi.com </button> </a> <a target="_blank" rel="external noopener" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4124209" title="pubmed link"> <button class="ui compact blue labeled icon button serp-button"> <i class="file alternate outline icon"></i> pubmed.gov </button> </a>

A least-cost path approach to stream delineation using lakes as patches and a digital elevation model as the cost surface

S.J. Melles, N.E. Jones, B. Schmidt, B. Rayfield
<span title="">2011</span> <i title="Elsevier BV"> <a target="_blank" rel="noopener" href="https://fatcat.wiki/container/2i4dodta3jfcjf5zgk6skuuhwm" style="color: black;">Procedia Environmental Sciences</a> </i> &nbsp;
Overlap statistics and classification accuracy estimates indicated that least-cost graphs and the circuit-based approaches hold some promise and avoid many of the pitfalls associated with removing depressions  ...  from a DEM.  ...  Using graph-theory to model hydrologic flow A hydrologic network can be modeled as a spatial graph consisting of a set of "nodes" (or patches) that represent lakes and "links" that represent the potential  ... 
<span class="external-identifiers"> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.1016/j.proenv.2011.07.042">doi:10.1016/j.proenv.2011.07.042</a> <a target="_blank" rel="external noopener" href="https://fatcat.wiki/release/kry6l5amczdjrlu362tktdt4bq">fatcat:kry6l5amczdjrlu362tktdt4bq</a> </span>
<a target="_blank" rel="noopener" href="https://web.archive.org/web/20170927154154/http://publisher-connector.core.ac.uk/resourcesync/data/elsevier/pdf/558/aHR0cDovL2FwaS5lbHNldmllci5jb20vY29udGVudC9hcnRpY2xlL3BpaS9zMTg3ODAyOTYxMTAwMTY5MQ%3D%3D.pdf" title="fulltext PDF download" data-goatcounter-click="serp-fulltext" data-goatcounter-title="serp-fulltext"> <button class="ui simple right pointing dropdown compact black labeled icon button serp-button"> <i class="icon ia-icon"></i> Web Archive [PDF] <div class="menu fulltext-thumbnail"> <img src="https://blobs.fatcat.wiki/thumbnail/pdf/dc/f1/dcf1cc49d466dcf7f511d4901525d7145ca3f746.180px.jpg" alt="fulltext thumbnail" loading="lazy"> </div> </button> </a> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.1016/j.proenv.2011.07.042"> <button class="ui left aligned compact blue labeled icon button serp-button"> <i class="unlock alternate icon" style="background-color: #fb971f;"></i> elsevier.com </button> </a>

Human Body Part Labeling and Tracking Using Graph Matching Theory

Nicolas Thome, Djamel Merad, Serge Miguet
<span title="">2006</span> <i title="IEEE"> <a target="_blank" rel="noopener" href="https://fatcat.wiki/container/s4u3jxdcmrevzj46e7ani77j4u" style="color: black;">2006 IEEE International Conference on Video and Signal Based Surveillance</a> </i> &nbsp;
We propose to perform this task by using Graph Matching. The silhouette skeleton is computed and decomposed into a set of segments corresponding to the different limbs.  ...  A Graph capturing the topology of the segments is generated and matched against a 3D model of the human skeleton.  ...  Bottom-up approaches process in an opposite manner. in a first time, body parts candidates are located in the image, based on low level image features.  ... 
<span class="external-identifiers"> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.1109/avss.2006.59">doi:10.1109/avss.2006.59</a> <a target="_blank" rel="external noopener" href="https://dblp.org/rec/conf/avss/ThomeMM06.html">dblp:conf/avss/ThomeMM06</a> <a target="_blank" rel="external noopener" href="https://fatcat.wiki/release/4eqypdgtg5hmzphk3m4rde7fmy">fatcat:4eqypdgtg5hmzphk3m4rde7fmy</a> </span>
<a target="_blank" rel="noopener" href="https://web.archive.org/web/20170808150658/http://webia.lip6.fr/~thomen/papers/AVSS_2006_Thome.pdf" title="fulltext PDF download" data-goatcounter-click="serp-fulltext" data-goatcounter-title="serp-fulltext"> <button class="ui simple right pointing dropdown compact black labeled icon button serp-button"> <i class="icon ia-icon"></i> Web Archive [PDF] <div class="menu fulltext-thumbnail"> <img src="https://blobs.fatcat.wiki/thumbnail/pdf/db/36/db36f81e405f9649249f2742fc2b0ab401a38492.180px.jpg" alt="fulltext thumbnail" loading="lazy"> </div> </button> </a> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.1109/avss.2006.59"> <button class="ui left aligned compact blue labeled icon button serp-button"> <i class="external alternate icon"></i> ieee.com </button> </a>

Large-scale Image Geo-Localization Using Dominant Sets

Eyasu Zemene Mequanint, Yonatan Tariku Tesfaye, Haroon Idrees, Andrea Prati, Marcello Pelillo, Mubarak Shah
<span title="">2018</span> <i title="Institute of Electrical and Electronics Engineers (IEEE)"> <a target="_blank" rel="noopener" href="https://fatcat.wiki/container/3px634ph3vhrtmtuip6xznraqi" style="color: black;">IEEE Transactions on Pattern Analysis and Machine Intelligence</a> </i> &nbsp;
Next, we cluster the features from reference images using Dominant Set clustering, which affords several advantages over existing approaches.  ...  First, it permits variable number of nodes in the cluster, which we use to dynamically select the number of nearest neighbors for each query feature based on its discrimination value.  ...  Multiple Feature Matching Using Dominant Sets The Dominant Set Framework The dominant set framework is a pairwise clustering approach [37] , based on the notion of a dominant set, which can be seen  ... 
<span class="external-identifiers"> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.1109/tpami.2017.2787132">doi:10.1109/tpami.2017.2787132</a> <a target="_blank" rel="external noopener" href="https://www.ncbi.nlm.nih.gov/pubmed/29990281">pmid:29990281</a> <a target="_blank" rel="external noopener" href="https://fatcat.wiki/release/cukuphxs3rc5fnm4djdkctbyb4">fatcat:cukuphxs3rc5fnm4djdkctbyb4</a> </span>
<a target="_blank" rel="noopener" href="https://web.archive.org/web/20180820180341/http://crcv.ucf.edu:80/papers/08242680.pdf" title="fulltext PDF download" data-goatcounter-click="serp-fulltext" data-goatcounter-title="serp-fulltext"> <button class="ui simple right pointing dropdown compact black labeled icon button serp-button"> <i class="icon ia-icon"></i> Web Archive [PDF] <div class="menu fulltext-thumbnail"> <img src="https://blobs.fatcat.wiki/thumbnail/pdf/fe/76/fe763f5fd8878c620e72603f8aa598f070e5b055.180px.jpg" alt="fulltext thumbnail" loading="lazy"> </div> </button> </a> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.1109/tpami.2017.2787132"> <button class="ui left aligned compact blue labeled icon button serp-button"> <i class="external alternate icon"></i> ieee.com </button> </a>

Scale-Space Texture Classification Using Combined Classifiers [chapter]

Mehrdad J. Gangeh, Bart M. ter Haar Romeny, C. Eswaran
<span title="">2007</span> <i title="Springer Berlin Heidelberg"> <a target="_blank" rel="noopener" href="https://fatcat.wiki/container/2w3awgokqne6te4nvlofavy5a4" style="color: black;">Lecture Notes in Computer Science</a> </i> &nbsp;
After some preprocessing and feature extraction using principal component analysis (PCA), instead of combining features obtained from different scales/derivatives to construct a combined feature space,  ...  The results show that this new approach can significantly improve the performance of the classification especially for small training set size.  ...  Duin from Delft University of Technology for useful discussions throughout this research.  ... 
<span class="external-identifiers"> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.1007/978-3-540-73040-8_33">doi:10.1007/978-3-540-73040-8_33</a> <a target="_blank" rel="external noopener" href="https://fatcat.wiki/release/w3n6xeodpfepvgzminhebgyz7i">fatcat:w3n6xeodpfepvgzminhebgyz7i</a> </span>
<a target="_blank" rel="noopener" href="https://web.archive.org/web/20190503100809/https://link.springer.com/content/pdf/10.1007%2F978-3-540-73040-8_33.pdf" title="fulltext PDF download" data-goatcounter-click="serp-fulltext" data-goatcounter-title="serp-fulltext"> <button class="ui simple right pointing dropdown compact black labeled icon button serp-button"> <i class="icon ia-icon"></i> Web Archive [PDF] <div class="menu fulltext-thumbnail"> <img src="https://blobs.fatcat.wiki/thumbnail/pdf/01/a5/01a5aba1e739f084340ff27995f024d4d9f4df8e.180px.jpg" alt="fulltext thumbnail" loading="lazy"> </div> </button> </a> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.1007/978-3-540-73040-8_33"> <button class="ui left aligned compact blue labeled icon button serp-button"> <i class="external alternate icon"></i> springer.com </button> </a>

Graph and Analytical Models for Emergency Evacuation

Antoine Desmet, Erol Gelenbe
<span title="2013-02-21">2013</span> <i title="MDPI AG"> <a target="_blank" rel="noopener" href="https://fatcat.wiki/container/hijy7jexkvcipg3tulqv73bck4" style="color: black;">Future Internet</a> </i> &nbsp;
performance estimates, this paper proposes an approach that offers fast estimates based on graph models and probability models.  ...  On the other hand, we also show that analytical models based on queueing theory can provide useful estimates of evacuation times and for routing optimisation.  ...  Graph Based Critical Sensor Assessment In this section, we show how graph theory can be used to offer a rapid assessment of the critical locations for placing sensors that will provide the high-value information  ... 
<span class="external-identifiers"> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.3390/fi5010046">doi:10.3390/fi5010046</a> <a target="_blank" rel="external noopener" href="https://fatcat.wiki/release/cqv34eromzganm4n34b2v4x4cm">fatcat:cqv34eromzganm4n34b2v4x4cm</a> </span>
<a target="_blank" rel="noopener" href="https://web.archive.org/web/20170809063442/http://spiral.imperial.ac.uk/bitstream/10044/1/11037/2/futureinternet-05-00046.pdf" title="fulltext PDF download" data-goatcounter-click="serp-fulltext" data-goatcounter-title="serp-fulltext"> <button class="ui simple right pointing dropdown compact black labeled icon button serp-button"> <i class="icon ia-icon"></i> Web Archive [PDF] <div class="menu fulltext-thumbnail"> <img src="https://blobs.fatcat.wiki/thumbnail/pdf/26/c4/26c434eec730fd24d4bcf40084917cdc026ca050.180px.jpg" alt="fulltext thumbnail" loading="lazy"> </div> </button> </a> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.3390/fi5010046"> <button class="ui left aligned compact blue labeled icon button serp-button"> <i class="unlock alternate icon" style="background-color: #fb971f;"></i> mdpi.com </button> </a>
&laquo; Previous Showing results 1 &mdash; 15 out of 240,369 results