Filters








208,932 Hits in 10.7 sec

Volterra Integral Equations and Some Nonlinear Integral Equations with Variable Limit of Integration as Generalized Moment Problems

María B. Pintarelli
<span title="2015-01-28">2015</span> <i title="David Publishing Company"> <a target="_blank" rel="noopener" href="https://fatcat.wiki/container/umpm5vq3obfpvnddpbhjqiobpi" style="color: black;">Journal of Mathematics and System Science</a> </i> &nbsp;
In this paper we will see that, under certain conditions, the techniques of generalized moment problem will apply to numerically solve an Volterra integral equation of first kind or second kind.  ...  Volterra integral equation is transformed into a one-dimensional generalized moment problem, and shall apply the moment problem techniques to find a numerical approximation of the solution.  ...  Acknowledgment Support of this work by Universidad Nacional de La Plata (Project 11/I153)  ... 
<span class="external-identifiers"> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.17265/2159-5291/2015.01.004">doi:10.17265/2159-5291/2015.01.004</a> <a target="_blank" rel="external noopener" href="https://fatcat.wiki/release/m4sizassrfg2hlvc3r5nwek4nu">fatcat:m4sizassrfg2hlvc3r5nwek4nu</a> </span>
<a target="_blank" rel="noopener" href="https://web.archive.org/web/20190428174847/http://www.davidpublisher.org/Public/uploads/Contribute/550684b0d9e92.pdf" title="fulltext PDF download" data-goatcounter-click="serp-fulltext" data-goatcounter-title="serp-fulltext"> <button class="ui simple right pointing dropdown compact black labeled icon button serp-button"> <i class="icon ia-icon"></i> Web Archive [PDF] <div class="menu fulltext-thumbnail"> <img src="https://blobs.fatcat.wiki/thumbnail/pdf/d4/6c/d46c690009e4d36b7e45ad14ccc513d52d14ca79.180px.jpg" alt="fulltext thumbnail" loading="lazy"> </div> </button> </a> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.17265/2159-5291/2015.01.004"> <button class="ui left aligned compact blue labeled icon button serp-button"> <i class="external alternate icon"></i> Publisher / doi.org </button> </a>

Page 3860 of Mathematical Reviews Vol. , Issue 83i [page]

<span title="">1983</span> <i title="American Mathematical Society"> <a target="_blank" rel="noopener" href="https://archive.org/details/pub_mathematical-reviews" style="color: black;">Mathematical Reviews </a> </i> &nbsp;
The authors propose a direct method for the numerical solution of an integral equation of the first kind, where the kernel possesses a logarithmic singularity and the integration ranges over a smooth closed  ...  A. 83i:65104 Numerical solution of an integral equation of the first kind with logarithmic singularity by the method of interpolation and collocation. (Russian) Zh. Vychisl. Mat. i Mat.  ... 
<span class="external-identifiers"> </span>
<a target="_blank" rel="noopener" href="https://archive.org/details/sim_mathematical-reviews_1983-09_83i/page/3860" title="read fulltext microfilm" data-goatcounter-click="serp-fulltext" data-goatcounter-title="serp-fulltext"> <button class="ui simple right pointing dropdown compact black labeled icon button serp-button"> <i class="icon ia-icon"></i> Archive [Microfilm] <div class="menu fulltext-thumbnail"> <img src="https://archive.org/serve/sim_mathematical-reviews_1983-09_83i/__ia_thumb.jpg" alt="fulltext thumbnail" loading="lazy"> </div> </button> </a>

Page 4894 of Mathematical Reviews Vol. , Issue 82k [page]

<span title="">1982</span> <i title="American Mathematical Society"> <a target="_blank" rel="noopener" href="https://archive.org/details/pub_mathematical-reviews" style="color: black;">Mathematical Reviews </a> </i> &nbsp;
They prefer integral equations of the first kind to equations of the second kind for the solution of the problem with prescribed displacements.  ...  “The numerical conditioning of integral equations of the first kind is worse than that of equations of the second kind.  ... 
<span class="external-identifiers"> </span>
<a target="_blank" rel="noopener" href="https://archive.org/details/sim_mathematical-reviews_1982-11_82k/page/4894" title="read fulltext microfilm" data-goatcounter-click="serp-fulltext" data-goatcounter-title="serp-fulltext"> <button class="ui simple right pointing dropdown compact black labeled icon button serp-button"> <i class="icon ia-icon"></i> Archive [Microfilm] <div class="menu fulltext-thumbnail"> <img src="https://archive.org/serve/sim_mathematical-reviews_1982-11_82k/__ia_thumb.jpg" alt="fulltext thumbnail" loading="lazy"> </div> </button> </a>

Page 1184 of Mathematical Reviews Vol. , Issue 90B [page]

<span title="">1990</span> <i title="American Mathematical Society"> <a target="_blank" rel="noopener" href="https://archive.org/details/pub_mathematical-reviews" style="color: black;">Mathematical Reviews </a> </i> &nbsp;
Summary: “We derive a local error indicator for the numerical solution of second-kind Fredholm equations by the Nystrém and product integration methods.  ...  A. (5-QLD) High-order methods for linear functionals of solutions of second kind integral equations. SIAM J. Numer. Anal. 25 (1988), no. 5, 1118-1137.  ... 
<span class="external-identifiers"> </span>
<a target="_blank" rel="noopener" href="https://archive.org/details/sim_mathematical-reviews_1990-02_90b/page/1184" title="read fulltext microfilm" data-goatcounter-click="serp-fulltext" data-goatcounter-title="serp-fulltext"> <button class="ui simple right pointing dropdown compact black labeled icon button serp-button"> <i class="icon ia-icon"></i> Archive [Microfilm] <div class="menu fulltext-thumbnail"> <img src="https://archive.org/serve/sim_mathematical-reviews_1990-02_90b/__ia_thumb.jpg" alt="fulltext thumbnail" loading="lazy"> </div> </button> </a>

Page 3627 of Mathematical Reviews Vol. , Issue 85h [page]

<span title="">1985</span> <i title="American Mathematical Society"> <a target="_blank" rel="noopener" href="https://archive.org/details/pub_mathematical-reviews" style="color: black;">Mathematical Reviews </a> </i> &nbsp;
This valuable survey paper briefly describes and compares meth- ods for numerical solution of the commonly occurring integral equation of the first kind of convolution type: 85h:65269 / k(z—y) f(y) dy  ...  A. 85h:65267 Use of additional information in the construction, based on local regularization, of algorithms for determining approximate solutions of integral equations of the first kind of convolution  ... 
<span class="external-identifiers"> </span>
<a target="_blank" rel="noopener" href="https://archive.org/details/sim_mathematical-reviews_1985-08_85h/page/3627" title="read fulltext microfilm" data-goatcounter-click="serp-fulltext" data-goatcounter-title="serp-fulltext"> <button class="ui simple right pointing dropdown compact black labeled icon button serp-button"> <i class="icon ia-icon"></i> Archive [Microfilm] <div class="menu fulltext-thumbnail"> <img src="https://archive.org/serve/sim_mathematical-reviews_1985-08_85h/__ia_thumb.jpg" alt="fulltext thumbnail" loading="lazy"> </div> </button> </a>

Page 751 of Mathematical Reviews Vol. , Issue 83b [page]

<span title="">1983</span> <i title="American Mathematical Society"> <a target="_blank" rel="noopener" href="https://archive.org/details/pub_mathematical-reviews" style="color: black;">Mathematical Reviews </a> </i> &nbsp;
The consideration here is to solve numerically the equation of the first kind {7 K(x,t)y(t)dt=g(x), -o<a<x<b<+00, where K is continuous and a unique solution exists on [a,b].  ...  Next the author studies the variation of constants formulas for various functional equations (e.g., Volterra integral equations of the second kind, linear Volterra and Abel integral equations of the first  ... 
<span class="external-identifiers"> </span>
<a target="_blank" rel="noopener" href="https://archive.org/details/sim_mathematical-reviews_1983-02_83b/page/751" title="read fulltext microfilm" data-goatcounter-click="serp-fulltext" data-goatcounter-title="serp-fulltext"> <button class="ui simple right pointing dropdown compact black labeled icon button serp-button"> <i class="icon ia-icon"></i> Archive [Microfilm] <div class="menu fulltext-thumbnail"> <img src="https://archive.org/serve/sim_mathematical-reviews_1983-02_83b/__ia_thumb.jpg" alt="fulltext thumbnail" loading="lazy"> </div> </button> </a>

Page 1489 of Mathematical Reviews Vol. , Issue 87c [page]

<span title="">1987</span> <i title="American Mathematical Society"> <a target="_blank" rel="noopener" href="https://archive.org/details/pub_mathematical-reviews" style="color: black;">Mathematical Reviews </a> </i> &nbsp;
M. 87c:65165b Corrigenda: “A numerical technique for the solution of singular integral equations of the second kind”. Quart. Appl. Math. 43 (1985), no. 1, 127.  ...  M. (1-NW) A numerical technique for the solution of singular integral equations of the second kind. Quart. Appl. Math. 42 (1985), no. 4, 455-465. Miller, G. R.; Keer, L.  ... 
<span class="external-identifiers"> </span>
<a target="_blank" rel="noopener" href="https://archive.org/details/sim_mathematical-reviews_1987-03_87c/page/1489" title="read fulltext microfilm" data-goatcounter-click="serp-fulltext" data-goatcounter-title="serp-fulltext"> <button class="ui simple right pointing dropdown compact black labeled icon button serp-button"> <i class="icon ia-icon"></i> Archive [Microfilm] <div class="menu fulltext-thumbnail"> <img src="https://archive.org/serve/sim_mathematical-reviews_1987-03_87c/__ia_thumb.jpg" alt="fulltext thumbnail" loading="lazy"> </div> </button> </a>

A survey of recent advances in the numerical treatment of Volterra integral and integro-differential equations

Hermann Brunner
<span title="">1982</span> <i title="Elsevier BV"> <a target="_blank" rel="noopener" href="https://fatcat.wiki/container/av75skmu6neednu63f27tpk7qu" style="color: black;">Journal of Computational and Applied Mathematics</a> </i> &nbsp;
The present survey paper samples recent advances in the numerical analysis of Volterra integral equations of the first and second kind and of integro-differential equations (including equations with weakly  ...  singular kernels) ; except for some important earlier references the discussion focuses on the development which has taken place during the last dozen years.  ...  . : Volterra equations of the second kind, in [A6], pp. 140-161. A25. LINZ P. : A survey of methods for the solution of Volterra integral equations of the first kind, in [A2], pp. 183-194. A26.  ... 
<span class="external-identifiers"> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.1016/0771-050x(82)90044-4">doi:10.1016/0771-050x(82)90044-4</a> <a target="_blank" rel="external noopener" href="https://fatcat.wiki/release/ksdw4j2x6nf6faqc3vkbe3wrhq">fatcat:ksdw4j2x6nf6faqc3vkbe3wrhq</a> </span>
<a target="_blank" rel="noopener" href="https://web.archive.org/web/20171004083255/http://publisher-connector.core.ac.uk/resourcesync/data/elsevier/pdf/dc1/aHR0cDovL2FwaS5lbHNldmllci5jb20vY29udGVudC9hcnRpY2xlL3BpaS8wNzcxMDUweDgyOTAwNDQ0.pdf" title="fulltext PDF download" data-goatcounter-click="serp-fulltext" data-goatcounter-title="serp-fulltext"> <button class="ui simple right pointing dropdown compact black labeled icon button serp-button"> <i class="icon ia-icon"></i> Web Archive [PDF] <div class="menu fulltext-thumbnail"> <img src="https://blobs.fatcat.wiki/thumbnail/pdf/1a/cf/1acfafcaa66b940fc17ba5eeead952556d561d11.180px.jpg" alt="fulltext thumbnail" loading="lazy"> </div> </button> </a> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.1016/0771-050x(82)90044-4"> <button class="ui left aligned compact blue labeled icon button serp-button"> <i class="external alternate icon"></i> elsevier.com </button> </a>

Page 5697 of Mathematical Reviews Vol. , Issue 87j [page]

<span title="">1987</span> <i title="American Mathematical Society"> <a target="_blank" rel="noopener" href="https://archive.org/details/pub_mathematical-reviews" style="color: black;">Mathematical Reviews </a> </i> &nbsp;
Wa- genaar, Numerical solution of a first kind Fredholm integral equa- tion arising in electron-atom scattering (pp. 224-233); Eberhard Schock, Approximate solution of ill-posed equations: arbitrarily  ...  Brannigan, Constrained approximation techniques for solving integral equations (pp. 68- 73); Hermann Brunner, On the numerical solution by collocation of Volterra integro-differential equations with nonsmooth  ... 
<span class="external-identifiers"> </span>
<a target="_blank" rel="noopener" href="https://archive.org/details/sim_mathematical-reviews_1987-10_87j/page/5697" title="read fulltext microfilm" data-goatcounter-click="serp-fulltext" data-goatcounter-title="serp-fulltext"> <button class="ui simple right pointing dropdown compact black labeled icon button serp-button"> <i class="icon ia-icon"></i> Archive [Microfilm] <div class="menu fulltext-thumbnail"> <img src="https://archive.org/serve/sim_mathematical-reviews_1987-10_87j/__ia_thumb.jpg" alt="fulltext thumbnail" loading="lazy"> </div> </button> </a>

Page 6634 of Mathematical Reviews Vol. , Issue 90K [page]

<span title="">1990</span> <i title="American Mathematical Society"> <a target="_blank" rel="noopener" href="https://archive.org/details/pub_mathematical-reviews" style="color: black;">Mathematical Reviews </a> </i> &nbsp;
Babolian and Delves (hereafter BD) described a Chebyshev series method for the solution of first-kind Fredholm integral equations.  ...  (D-KSRL) The numerical solution of Fredholm integral equations of the first kind with inaccurately given kernel using Marti’s method.  ... 
<span class="external-identifiers"> </span>
<a target="_blank" rel="noopener" href="https://archive.org/details/sim_mathematical-reviews_1990-11_90k/page/6634" title="read fulltext microfilm" data-goatcounter-click="serp-fulltext" data-goatcounter-title="serp-fulltext"> <button class="ui simple right pointing dropdown compact black labeled icon button serp-button"> <i class="icon ia-icon"></i> Archive [Microfilm] <div class="menu fulltext-thumbnail"> <img src="https://archive.org/serve/sim_mathematical-reviews_1990-11_90k/__ia_thumb.jpg" alt="fulltext thumbnail" loading="lazy"> </div> </button> </a>

Page 745 of Mathematical Reviews Vol. , Issue 84b [page]

<span title="">1984</span> <i title="American Mathematical Society"> <a target="_blank" rel="noopener" href="https://archive.org/details/pub_mathematical-reviews" style="color: black;">Mathematical Reviews </a> </i> &nbsp;
The paper outlines a certain projection method for a Fredholm integral equation of the first kind with a logarithmic singularity in the kernel.  ...  Saadabaey, A. 84b:65135 Construction of a regularizing algorithm for solving a nonlinear integral equation of the first kind.  ... 
<span class="external-identifiers"> </span>
<a target="_blank" rel="noopener" href="https://archive.org/details/sim_mathematical-reviews_1984-02_84b/page/745" title="read fulltext microfilm" data-goatcounter-click="serp-fulltext" data-goatcounter-title="serp-fulltext"> <button class="ui simple right pointing dropdown compact black labeled icon button serp-button"> <i class="icon ia-icon"></i> Archive [Microfilm] <div class="menu fulltext-thumbnail"> <img src="https://archive.org/serve/sim_mathematical-reviews_1984-02_84b/__ia_thumb.jpg" alt="fulltext thumbnail" loading="lazy"> </div> </button> </a>

Collocation Technique for Numerical Solution of Integral Equations with Certain Orthogonal Basis Function in Interval [0, 1]

O. L. Babasola, I. Irakoze
<span title="">2017</span> <i title="Scientific Research Publishing, Inc,"> <a target="_blank" rel="noopener" href="https://fatcat.wiki/container/gk5ai2y7zbf7teoyfzukkz3any" style="color: black;">OALib</a> </i> &nbsp;
The zeros of these polynomials were employed as points of collocation for the orthogonal collocation technique in the solution of integral equations.  ...  This paper is concerned with the construction of a class of polynomial orthogonal with respect to the weight function ( ) 0,1 .  ...  Acknowledgements I wish to acknowledge the contribution of my mentor towards the completion of this paper.  ... 
<span class="external-identifiers"> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.4236/oalib.1104050">doi:10.4236/oalib.1104050</a> <a target="_blank" rel="external noopener" href="https://fatcat.wiki/release/h6yo6lqe6bg6fkyc7c247hdxxq">fatcat:h6yo6lqe6bg6fkyc7c247hdxxq</a> </span>
<a target="_blank" rel="noopener" href="https://web.archive.org/web/20180603052825/http://www.oalib.com/paper/pdf/5290840" title="fulltext PDF download" data-goatcounter-click="serp-fulltext" data-goatcounter-title="serp-fulltext"> <button class="ui simple right pointing dropdown compact black labeled icon button serp-button"> <i class="icon ia-icon"></i> Web Archive [PDF] <div class="menu fulltext-thumbnail"> <img src="https://blobs.fatcat.wiki/thumbnail/pdf/6d/90/6d907048d9f70209c317a5ec36f226f078781eac.180px.jpg" alt="fulltext thumbnail" loading="lazy"> </div> </button> </a> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.4236/oalib.1104050"> <button class="ui left aligned compact blue labeled icon button serp-button"> <i class="external alternate icon"></i> Publisher / doi.org </button> </a>

Page 4796 of Mathematical Reviews Vol. , Issue 86j [page]

<span title="">1986</span> <i title="American Mathematical Society"> <a target="_blank" rel="noopener" href="https://archive.org/details/pub_mathematical-reviews" style="color: black;">Mathematical Reviews </a> </i> &nbsp;
Author summary: “Fractional powers of linear multistep methods are suggested for the numerical solution of weakly singular Volterra integral equations.  ...  Author summary: “We consider the numerical solution of one- dimensional Fredholm integral equations of the second kind by the Galerkin and collocation methods and their iterated variants, using spline  ... 
<span class="external-identifiers"> </span>
<a target="_blank" rel="noopener" href="https://archive.org/details/sim_mathematical-reviews_1986-10_86j/page/4796" title="read fulltext microfilm" data-goatcounter-click="serp-fulltext" data-goatcounter-title="serp-fulltext"> <button class="ui simple right pointing dropdown compact black labeled icon button serp-button"> <i class="icon ia-icon"></i> Archive [Microfilm] <div class="menu fulltext-thumbnail"> <img src="https://archive.org/serve/sim_mathematical-reviews_1986-10_86j/__ia_thumb.jpg" alt="fulltext thumbnail" loading="lazy"> </div> </button> </a>

Page 3533 of Mathematical Reviews Vol. , Issue 82h [page]

<span title="">1982</span> <i title="American Mathematical Society"> <a target="_blank" rel="noopener" href="https://archive.org/details/pub_mathematical-reviews" style="color: black;">Mathematical Reviews </a> </i> &nbsp;
, for the solution of first kind integral equations.  ...  M. 82h:65094 A formal comparison of methods proposed for the numerical solution of first kind integral equations. J. Austral. Math. Soc. Ser. B 22 (1980/81), no. 4, 488-500.  ... 
<span class="external-identifiers"> </span>
<a target="_blank" rel="noopener" href="https://archive.org/details/sim_mathematical-reviews_1982-08_82h/page/3533" title="read fulltext microfilm" data-goatcounter-click="serp-fulltext" data-goatcounter-title="serp-fulltext"> <button class="ui simple right pointing dropdown compact black labeled icon button serp-button"> <i class="icon ia-icon"></i> Archive [Microfilm] <div class="menu fulltext-thumbnail"> <img src="https://archive.org/serve/sim_mathematical-reviews_1982-08_82h/__ia_thumb.jpg" alt="fulltext thumbnail" loading="lazy"> </div> </button> </a>

Page 2906 of Mathematical Reviews Vol. 58, Issue 4 [page]

<span title="">1979</span> <i title="American Mathematical Society"> <a target="_blank" rel="noopener" href="https://archive.org/details/pub_mathematical-reviews" style="color: black;">Mathematical Reviews </a> </i> &nbsp;
For example, a more general exposition can be found in the thesis of P. A. W. Holyhead [“Direct methods for the numerical solution of Volterra integral equations of the first kind”, Ph.D.  ...  For a review of this item see Zbl 306 #65081. Brunner, Hermann 58 #19267 The approximate solution of linear and nonlinear first-kind integral equations of Volterra type.  ... 
<span class="external-identifiers"> </span>
<a target="_blank" rel="noopener" href="https://archive.org/details/sim_mathematical-reviews_1979-10_58_4/page/2906" title="read fulltext microfilm" data-goatcounter-click="serp-fulltext" data-goatcounter-title="serp-fulltext"> <button class="ui simple right pointing dropdown compact black labeled icon button serp-button"> <i class="icon ia-icon"></i> Archive [Microfilm] <div class="menu fulltext-thumbnail"> <img src="https://archive.org/serve/sim_mathematical-reviews_1979-10_58_4/__ia_thumb.jpg" alt="fulltext thumbnail" loading="lazy"> </div> </button> </a>
&laquo; Previous Showing results 1 &mdash; 15 out of 208,932 results