A copy of this work was available on the public web and has been preserved in the Wayback Machine. The capture dates from 2020; you can also visit <a rel="external noopener" href="https://arxiv.org/pdf/2001.07967v1.pdf">the original URL</a>. The file type is <code>application/pdf</code>.
Filters
A Tchebycheffian extension of multi-degree B-splines: Algorithmic computation and properties
[article]
<span title="2020-01-22">2020</span>
<i >
arXiv
</i>
<span class="release-stage" >pre-print</span>
In this paper we present an efficient and robust approach to compute a normalized B-spline-like basis for spline spaces with pieces drawn from extended Tchebycheff spaces. ...
The B-spline-like basis shares many characterizing properties with classical univariate B-splines and may easily be incorporated in existing spline codes. ...
For polynomial B-splines of non-uniform degree, so-called multidegree B-splines, Bézier extraction has been analyzed and successfully applied in [41, 42] . ...
<span class="external-identifiers">
<a target="_blank" rel="external noopener" href="https://arxiv.org/abs/2001.07967v1">arXiv:2001.07967v1</a>
<a target="_blank" rel="external noopener" href="https://fatcat.wiki/release/nieodsm5qjadho7bb66gycmqby">fatcat:nieodsm5qjadho7bb66gycmqby</a>
</span>
<a target="_blank" rel="noopener" href="https://web.archive.org/web/20200321103333/https://arxiv.org/pdf/2001.07967v1.pdf" title="fulltext PDF download" data-goatcounter-click="serp-fulltext" data-goatcounter-title="serp-fulltext">
<button class="ui simple right pointing dropdown compact black labeled icon button serp-button">
<i class="icon ia-icon"></i>
Web Archive
[PDF]
</button>
</a>
<a target="_blank" rel="external noopener" href="https://arxiv.org/abs/2001.07967v1" title="arxiv.org access">
<button class="ui compact blue labeled icon button serp-button">
<i class="file alternate outline icon"></i>
arxiv.org
</button>
</a>
A General Class of C1 Smooth Rational Splines: Application to Construction of Exact Ellipses and Ellipsoids
<span title="">2020</span>
<i title="Elsevier BV">
<a target="_blank" rel="noopener" href="https://fatcat.wiki/container/wquzxyrherhzfhmbojag5cxcra" style="color: black;">Computer-Aided Design</a>
</i>
In this paper, we describe a general class of C 1 smooth rational splines that enables, in particular, exact descriptions of ellipses and ellipsoids -some of the most important primitives for CAD and CAE ...
Finally, all C 1 spline constructions yield spline basis functions that are locally supported and form a convex partition of unity. ...
He is a member of Gruppo Nazionale per il Calcolo Scientifico, Istituto Nazionale di Alta Matematica. ...
<span class="external-identifiers">
<a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.1016/j.cad.2020.102982">doi:10.1016/j.cad.2020.102982</a>
<a target="_blank" rel="external noopener" href="https://fatcat.wiki/release/jeptshga6bgqnd4robn4n7rmfq">fatcat:jeptshga6bgqnd4robn4n7rmfq</a>
</span>
<a target="_blank" rel="noopener" href="https://web.archive.org/web/20210428041605/https://repository.tudelft.nl/islandora/object/uuid%3A92180757-f15e-4709-b129-88abe71798b1/datastream/OBJ/download" title="fulltext PDF download" data-goatcounter-click="serp-fulltext" data-goatcounter-title="serp-fulltext">
<button class="ui simple right pointing dropdown compact black labeled icon button serp-button">
<i class="icon ia-icon"></i>
Web Archive
[PDF]
<div class="menu fulltext-thumbnail">
<img src="https://blobs.fatcat.wiki/thumbnail/pdf/6f/6c/6f6ccde8613b1207fd9d3fa9c23417d0b7ff9b79.180px.jpg" alt="fulltext thumbnail" loading="lazy">
</div>
</button>
</a>
<a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.1016/j.cad.2020.102982">
<button class="ui left aligned compact blue labeled icon button serp-button">
<i class="unlock alternate icon" style="background-color: #fb971f;"></i>
elsevier.com
</button>
</a>