A copy of this work was available on the public web and has been preserved in the Wayback Machine. The capture dates from 2017; you can also visit the original URL.
The file type is `application/pdf`

.

## Filters

##
###
A Robinson-Schensted-type correspondence for a dual pair on spinors

1993
*
Journal of combinatorial theory. Series A
*

DEDICATED TO PROFESSOR TOSIRO TSUZUKU

doi:10.1016/0097-3165(93)90027-6
fatcat:6tsq37t2evg6bh72jgs27wmcia
*ON*HIS SIXTIETH BIRTHDAY*A*new*Robinson*-*Schensted*-*type**correspondence*is given in connection with*a**dual**pair*of*type*(Cm, C,)*on**spinors*, i.e., the*pair*(Sp(2m, C ... Our contribution lies in the interpretation of this*dual**pair*in*a*form expressible in terms of insertions, and also in the construction of*a*bijection that expresses the history of shape changes occuring ... The frame might be omitted so that*a*tableau would be just an array of symbols in the shape 4.*A**DUAL**PAIR*OF*TYPE*(Cm, Cn)*ON**SPINORS**Dual**pairs*. ...##
###
Page 6445 of Mathematical Reviews Vol. , Issue 95k
[page]

1995
*
Mathematical Reviews
*

Bernard Leclerc (F-PARIS7-LI; Paris)
95k:05183 05E15 20G05
Terada, Itaru (J-TOK YOA; Meguro)

*A**Robinson*-*Schensted*-*type**correspondence**for**a**dual**pair**on**spinors*. (English summary) J. Combin. ... “In this article, we construct*a*new bijection connected to ‘*a**dual**pair**on**spinors*of*type*(C,,,C,)’ in K. Hasegawa’s ter- minology [Publ. Res. Inst. Math. ...##
###
Page 39 of Mathematical Reviews Vol. , Issue 92a
[page]

1992
*
Mathematical Reviews
*

*Robinson*-

*Schensted*

*for*SO(2n) (Japanese) (pp. 61-87); Itaru Ter- ada,

*A*

*Robinson*-

*Schensted*

*correspondence*that

*corresponds*to

*a*

*dual*

*pair*of

*spinors*(Japanese) (pp. 88-104); Toshiki Nakashima,

*On*the ... In- stead of the inverse operation method, which fails

*for*fuzzy sets, inverse operations

*on*the boundary points of

*a*-level set intervals

*for*continuous membership functions are used when the derived 92a ...

##
###
Skew Howe duality and limit shapes of Young diagrams
[article]

2021
*
arXiv
*
pre-print

We consider the skew Howe duality

arXiv:2111.12426v2
fatcat:iczcgd5eujgsldxdxvry6anyui
*for*the action of certain*dual**pairs*of Lie groups (G_1, G_2)*on*the exterior algebra ⋀(ℂ^n⊗ℂ^k) as*a*probability measure*on*Young diagrams by the decomposition into the ... We prove*a*combinatorial version of this skew Howe*for*the*pairs*(GL_n, GL_k), (SO_2n+1, Pin_2k), (Sp_2n, Sp_2k), and (Or_2n, SO_k) using crystal bases, which allows us to interpret the skew Howe duality ...*A**Robinson*–*Schensted*-*type**correspondence**for**a**dual**pair**on**spinors*. J. Combin. Theory Ser.*A*, 63(1):90–109, 1993. [TZ04] Tatsuya Tate and Steve Zelditch. ...##
###
Classification of primitive ideals of U(o(∞)) and U(sp(∞))
[article]

2020
*
arXiv
*
pre-print

Theng(∞)=_n≥ 2g(2n)

arXiv:2001.03858v1
fatcat:4u5youzrbfcc5m35engrx3tyb4
*for*g(2n)=o(2n) or g(2n)=sp(2n), respectively. ... In the case of sp(∞), only 'half' of the primitive ideals are integrable, and nonintegrable primitive ideals*correspond*to triples (x,y,Z) where y is*a*half-integer. ... Let's describe the*Robinson*-*Schensted*(or*Robinson*-*Schensted*-Knuth) algorithm. ...##
###
On ideals in U(sl(∞)), U( o(∞)), U(sp(∞))
[article]

2016
*
arXiv
*
pre-print

We provide

arXiv:1511.01733v2
fatcat:trkj77zecrfltcckpsusnl2pgm
*a*review of results*on*two-sided ideals in the enveloping algebra U( g(∞)) of*a*locally simple Lie algebra g(∞). ... The main results include*a*description of all integrable ideals in U( g(∞)), as well as*a*criterion*for*the annihilator of an arbitrary (not necessarily integrable) simple highest weight module to be nonzero ... This is accomplished by*a*careful reading of [BV, Section: The*Robinson*-*Schensted*Algorithm*for*Classical Groups]. It remains to compare Steps 5 of the two algorithms. ...##
###
Littelmann paths and Brownian paths

2005
*
Duke mathematical journal
*

We study some path transformations related to Littelmann path model and their applications to representation theory and Brownian motion in

doi:10.1215/s0012-7094-05-13014-9
fatcat:2xddowccizaitf2za7gs3gnyzu
*a*Weyl chamber. ... In the case of*a*Weyl group of*type**A*d−1 the transform P w0 is connected with the*Robinson*,*Schensted*and Knuth (RSK)*correspondence*: Let us consider*a*word v 1 v 2 · · · v n written with the alphabet ... This last weight*corresponds*to the*spinor*representation*for**type*B l , which is*a*minuscule representation, i.e. all weights are conjugate to ω l . ...##
###
Page 385 of Mathematical Reviews Vol. 27, Issue Index
[page]

*
Mathematical Reviews
*

Differential operators

*on*quotients of simple groups. 95i:16027 Tan, Eng-Chye see Aslaksen, Helmer; et al., 95c:15061 Terada, Itaru*A**Robinson*-*Schensted*-*type**correspondence**for**a**dual**pair**on**spinors*. ... Splitting metaplectic covers of*dual*reductive*pairs*. (English summary) 95h:22019 Kuhn, Nicholas J. Generic representations of the finite general linear groups and the Steenrod algebra. ...##
###
Page 1354 of Mathematical Reviews Vol. 27, Issue Index
[page]

*
Mathematical Reviews
*

(Evangelos Jfantis) 95i:39007 39A70 (42C05, 47A57, 47B39)
Terada, Itaru

*A**Robinson*-*Schensted*-*type**correspondence**for**a**dual**pair**on**spinors*. (English summary) J. Combin. Theory Ser. ... Primal-*dual*algorithms*for*linear programming based*on*the logarithmic barrier method. (English summary) J. Optim. Theory Appl. 83 (1994), no. 1, 1-26. ...##
###
The Structure of Bipartite Quantum States - Insights from Group Theory and Cryptography
[article]

2006
*
arXiv
*
pre-print

In particular, it is shown how to derive

arXiv:quant-ph/0604183v1
fatcat:uc2tsnbnevgwne2y7wyquptyyu
*a**one*-to-*one*relation between the spectra of*a*bipartite quantum state and its reduced states, and the Kronecker coefficients of the symmetric group. ... Drawing*on*an analogy between entanglement distillation and secret-key agreement in classical cryptography,*a*new entanglement measure, 'squashed entanglement', is introduced. ... 33 equivalent, xxi external product, xxv fundamental, 43 irreducible, xxii Lie group, 17 regular, xxv spin, 20 tensor product, xxv reverse relative entropy of entanglement, 106 ring of invariants, 42*Robinson*-*Schensted*...