SynthSeg: Domain Randomisation for Segmentation of Brain Scans of any Contrast and Resolution
[article]
Benjamin Billot, Douglas N. Greve, Oula Puonti, Axel Thielscher, Koen Van Leemput, Bruce Fischl, Adrian V. Dalca, Juan Eugenio Iglesias
<span title="2021-12-21">2021</span>
<i >
arXiv
</i>
<span class="release-stage" >pre-print</span>
Here we introduce SynthSeg, the first segmentation CNN agnostic to contrast and resolution. SynthSeg is trained with synthetic data sampled from a generative model conditioned on segmentations. ...
Crucially, we adopt a domain randomisation strategy where we fully randomise the contrast and resolution of the synthetic training data. ...
Dalca, “A Learning Strategy for Contrast-agnostic MRI with application to confocal microscopy images of bee brains,”
Segmentation,” in Medical Imaging with Deep Learning, 2020, pp. ...
<span class="external-identifiers">
<a target="_blank" rel="external noopener" href="https://arxiv.org/abs/2107.09559v2">arXiv:2107.09559v2</a>
<a target="_blank" rel="external noopener" href="https://fatcat.wiki/release/lxppdyslkffg7hxggk3ztcs73m">fatcat:lxppdyslkffg7hxggk3ztcs73m</a>
</span>
<a target="_blank" rel="noopener" href="https://web.archive.org/web/20220103031801/https://arxiv.org/pdf/2107.09559v2.pdf" title="fulltext PDF download" data-goatcounter-click="serp-fulltext" data-goatcounter-title="serp-fulltext">
<button class="ui simple right pointing dropdown compact black labeled icon button serp-button">
<i class="icon ia-icon"></i>
Web Archive
[PDF]
<div class="menu fulltext-thumbnail">
<img src="https://blobs.fatcat.wiki/thumbnail/pdf/89/63/8963d01ae6651e06b8d885d06187d043d47746ba.180px.jpg" alt="fulltext thumbnail" loading="lazy">
</div>
</button>
</a>
<a target="_blank" rel="external noopener" href="https://arxiv.org/abs/2107.09559v2" title="arxiv.org access">
<button class="ui compact blue labeled icon button serp-button">
<i class="file alternate outline icon"></i>
arxiv.org
</button>
</a>