1 Hit in 4.7 sec

A Hybrid 3DCNN and 3DC-LSTM based model for 4D Spatio-temporal fMRI data: An ABIDE Autism Classification study [article]

Ahmed El-Gazzar, Mirjam Quaak, Leonardo Cerliani, Peter Bloem, Guido van Wingen, Rajat Mani Thomas
<span title="2020-02-14">2020</span> <i > arXiv </i> &nbsp; <span class="release-stage" >pre-print</span>
We evaluate our proposed model on the publicly available ABIDE dataset to demonstrate the capability of our model to classify Autism Spectrum Disorder (ASD) from resting-state fMRI data.  ...  Thus, fMRI scans are represented as 4-Dimensional (3-space + 1-time) tensors. And it is widely believed that the spatio-temporal patterns in fMRI manifests as behaviour and clinical symptoms.  ...  Method In this work we present a novel architecture for 4D rs-fMRI data with application to ASD classification.  ... 
<span class="external-identifiers"> <a target="_blank" rel="external noopener" href="">arXiv:2002.05981v1</a> <a target="_blank" rel="external noopener" href="">fatcat:lwpqucodyfbizpeiwcfi7cfzkm</a> </span>
<a target="_blank" rel="noopener" href="" title="fulltext PDF download" data-goatcounter-click="serp-fulltext" data-goatcounter-title="serp-fulltext"> <button class="ui simple right pointing dropdown compact black labeled icon button serp-button"> <i class="icon ia-icon"></i> Web Archive [PDF] </button> </a> <a target="_blank" rel="external noopener" href="" title=" access"> <button class="ui compact blue labeled icon button serp-button"> <i class="file alternate outline icon"></i> </button> </a>