Filters








6 Hits in 7.2 sec

Big Data Workflows: Locality-Aware Orchestration Using Software Containers

Andrei-Alin Corodescu, Nikolay Nikolov, Akif Quddus Khan, Ahmet Soylu, Mihhail Matskin, Amir H. Payberah, Dumitru Roman
2021 Sensors  
Existing big data processing solutions provide limited support for handling data locality and are inefficient in processing small and frequent events specific to the edge environments.  ...  This article proposes a novel architecture and a proof-of-concept implementation for software container-centric big data workflow orchestration that puts data locality at the forefront.  ...  In Proceedings of the IEEE International Conference on Big Data (Big Data 2019), Los Angeles, CA, USA, 912 December 2019; pp. 4537–4544. [CrossRef] 47. Martin, P.  ... 
doi:10.3390/s21248212 pmid:34960302 pmcid:PMC8706844 fatcat:3nc2j4pvdfdynn573zzq7ympca

A Comprehensive Survey on Sharding in Blockchains

Jinwen Xi, Shihong Zou, Guoai Xu, Yanhui Guo, Yueming Lu, Jiuyun Xu, Xuanwen Zhang, Francesco Gringoli
2021 Mobile Information Systems  
Therefore, based on the three-layer architecture, this study presents a variety of solutions to improve the scalability of the blockchain.  ...  As the scale of the network expands, one of the most practical ways to achieve horizontal scalability is sharding, where the network is divided into multiple subnetworks to avoid repeated communication  ...  Los Angeles, CA, USA, October 1987. [65] I.  ... 
doi:10.1155/2021/5483243 fatcat:x67pir24enadjaauwvbh76dpre

HPTMT Parallel Operators for High Performance Data Science and Data Engineering

Vibhatha Abeykoon, Supun Kamburugamuve, Chathura Widanage, Niranda Perera, Ahmet Uyar, Thejaka Amila Kanewala, Gregor von Laszewski, Geoffrey Fox
2022
Our analysis show that the proposed system architecture is better suited for high performance computing environments compared to the current big data processing systems.  ...  data science together efficiently.  ...  “Streaming Machine Learning Algorithms with Big Data Systems,” in 2019 IEEE International Conference on Big Data (Big Data), Los Angeles, CA, USA (IEEE), 5661–5666. doi:10.1109/bigdata47090.2019.9006337  ... 
doi:10.3389/fdata.2021.756041 pmid:35198971 pmcid:PMC8860100 fatcat:y4n3f4rzvbbnzmwsyd5csf7mqu

Annual Report 2018
国立情報学研究所 平成30年度(2018年度)年報

Interfaces (IUI2019), poster, Los Angeles, USA (2019.03) Gheorghita Ghinea: "A study on the quality of experience of crossmodal mulsemedia" ,10th International Conference on Management of Digital EcoSystems  ...  The 6th IEEE International Conference on Big Data and Smart Computing (BigCcomp2019),pp.242-249 (2019.03) その他の研究活動・社会活動 1) Content 2018 プログラム委員 2) ICDM 2018 プログラム委員 3) TPDL 2018 プログラム委員 4) WI2018 プログラム  ... 
doi:10.20736/0000001316 fatcat:ag6okeeknjeoxglo6j6yylm55y

Dagstuhl Reports, Volume 9, Issue 12, December 2019, Complete Issue

2020
Dagstuhl Reports, Volume 9, Issue 12, December 2019, Complete Issue  ...  Oguchi: "Management of Anomalous Driving Behavior". 2019 IEEE Vehicular Networking Conference, Los Angeles, USA, December 4-6, 2019.  ...  International Conference on Computer Design, ICCD 2019, Abu Dhabi, United Arab Emirates, November 17-20, 2019, pp. 217-226, IEEE, 2019.  ... 
doi:10.4230/dagrep.9.12 fatcat:hebigxkvinhjdb6qlg3j5hw25u

Mapping (Dis-)Information Flow about the MH17 Plane Crash

Mareike Hartmann, Yevgeniy Golovchenko, Isabelle Augenstein
2019 Proceedings of the Second Workshop on Natural Language Processing for Internet Freedom: Censorship, Disinformation, and Propaganda   unpublished
ii Preface Welcome to the second edition of the Workshop on Natural Language Processing for Internet Freedom (NLP4IF 2019). This year, we focused on censorship, disinformation, and propaganda.  ...  We further featured a shared task on the identification of propaganda in news articles. The task included two subtasks with different levels of complexity.  ...  The corpus for the task was annotated by A Data Pro, 7 a company that performs high-quality manual annotations.  ... 
doi:10.18653/v1/d19-5006 fatcat:77l3dndrkvfmlhjt6qvnrassgi