IA Scholar Query: Improved Explicit Hitting-Sets for ROABPs.
https://scholar.archive.org/
Internet Archive Scholar query results feedeninfo@archive.orgWed, 15 Sep 2021 00:00:00 GMTfatcat-scholarhttps://scholar.archive.org/help1440Improved Hitting Set for Orbit of ROABPs
https://scholar.archive.org/work/iny5gi7egzbvpde5gdzpqziqku
The orbit of an n-variate polynomial f(x) over a field 𝔽 is the set {f(Ax+b) ∣ A ∈ GL(n, 𝔽) and b ∈ 𝔽ⁿ}, and the orbit of a polynomial class is the union of orbits of all the polynomials in it. In this paper, we give improved constructions of hitting-sets for the orbit of read-once oblivious algebraic branching programs (ROABPs) and a related model. Over fields with characteristic zero or greater than d, we construct a hitting set of size (ndw)^{O(w²log n⋅ min{w², dlog w})} for the orbit of ROABPs in unknown variable order where d is the individual degree and w is the width of ROABPs. We also give a hitting set of size (ndw)^{O(min{w²,dlog w})} for the orbit of polynomials computed by w-width ROABPs in any variable order. Our hitting sets improve upon the results of Saha and Thankey [Chandan Saha and Bhargav Thankey, 2021] who gave an (ndw)^{O(dlog w)} size hitting set for the orbit of commutative ROABPs (a subclass of any-order ROABPs) and (nw)^{O(w⁶log n)} size hitting set for the orbit of multilinear ROABPs. Designing better hitting sets in large individual degree regime, for instance d > n, was asked as an open problem by [Chandan Saha and Bhargav Thankey, 2021] and this work solves it in small width setting. We prove some new rank concentration results by establishing low-cone concentration for the polynomials over vector spaces, and they strengthen some previously known low-support based rank concentrations shown in [Michael A. Forbes et al., 2013]. These new low-cone concentration results are crucial in our hitting set construction, and may be of independent interest. To the best of our knowledge, this is the first time when low-cone rank concentration has been used for designing hitting sets.Vishwas Bhargava, Sumanta Ghosh, Mary Wootters, Laura Sanitàwork_iny5gi7egzbvpde5gdzpqziqkuWed, 15 Sep 2021 00:00:00 GMTHitting Sets for Orbits of Circuit Classes and Polynomial Families
https://scholar.archive.org/work/u6abatygzjdpxeuwb2limu5h5q
The orbit of an n-variate polynomial f(𝐱) over a field 𝔽 is the set {f(A𝐱+𝐛) : A ∈ GL(n,𝔽) and 𝐛 ∈ 𝔽ⁿ}. In this paper, we initiate the study of explicit hitting sets for the orbits of polynomials computable by several natural and well-studied circuit classes and polynomial families. In particular, we give quasi-polynomial time hitting sets for the orbits of: 1) Low-individual-degree polynomials computable by commutative ROABPs. This implies quasi-polynomial time hitting sets for the orbits of the elementary symmetric polynomials. 2) Multilinear polynomials computable by constant-width ROABPs. This implies a quasi-polynomial time hitting set for the orbits of the family {IMM_{3,d}}_{d ∈ ℕ}, which is complete for arithmetic formulas. 3) Polynomials computable by constant-depth, constant-occur formulas. This implies quasi-polynomial time hitting sets for the orbits of multilinear depth-4 circuits with constant top fan-in, and also polynomial-time hitting sets for the orbits of the power symmetric and the sum-product polynomials. 4) Polynomials computable by occur-once formulas.Chandan Saha, Bhargav Thankey, Mary Wootters, Laura Sanitàwork_u6abatygzjdpxeuwb2limu5h5qWed, 15 Sep 2021 00:00:00 GMT