A Method for Constructing an Urban Waterlogging Emergency Knowledge Graph Based on Spatiotemporal Processes release_ydrzsap46rfchlw7vjqmsxc44e

by Wei Mao, Jie Shen, Qian Su, Sihu Liu, Saied Pirasteh, Kunihiro Ishii

Entity Metadata (schema)

abstracts[] {'sha1': '6c8fd40b51ebcba57fd57253d41ce4ac3fc1bd0f', 'content': 'Urban waterlogging is one of the major "diseases" faced by cities, posing a great challenge to the healthy and sustainable development of cities. The traditional geographic knowledge graph struggles to capture dynamic changes in urban waterlogging over time. Therefore, the objective of this study is to analyze the time, events, properties, geographic objects, and activities associated with urban waterlogging emergency responses from the geographic spatial and temporal processes perspective and to construct an urban waterlogging emergency knowledge graph by combining top-down and bottom-up approaches. We propose a conceptual model of urban waterlogging emergency response ontology based on spatiotemporal processes by analyzing the basic laws and influencing factors of urban waterlogging occurrence and development. Secondly, we describe the construction process of the urban waterlogging emergency response knowledge graph from knowledge extraction, knowledge fusion, and knowledge storage. Finally, the knowledge graph was visualized using 159 urban waterlogging events in China from 2020–2022, with a quality assessment indicating 81% correctness, 65.5% completeness, and 95% data conciseness. The results show that this method can effectively express the spatiotemporal process of an urban waterlogging emergency response and can provide a reference for the spatiotemporal modeling of the knowledge graph.', 'mimetype': 'application/xml+jats', 'lang': None}
container {'state': 'active', 'ident': 'fw2uac7a5jggbfgqwh2wqy7yxu', 'revision': 'd53cdecc-b2c7-4274-a081-2ac5c7b5baf4', 'redirect': None, 'extra': {'abbrev': 'ISPRS Int J Geoinf', 'country': 'ch', 'default_license': 'CC-BY', 'doaj': {'archive': ['national-library'], 'as_of': '2022-07-06', 'default_license': 'CC-BY', 'seal': True}, 'kbart': {'clockss': {'year_spans': [[2012, 2022]]}}, 'languages': ['en'], 'publisher_type': 'oa', 'road': {'as_of': '2018-01-24'}, 'sherpa_romeo': {'color': 'green'}, 'szczepanski': {'as_of': '2018'}, 'urls': ['http://www.e-helvetica.nb.admin.ch/directAccess?callnumber=bel-235923', 'https://www.mdpi.com/journal/ijgi', 'http://nbn-resolving.de/urn/resolver.pl?urn=urn:nbn:ch:bel-235923']}, 'edit_extra': None, 'name': 'ISPRS International Journal of Geo-Information', 'container_type': 'journal', 'publication_status': None, 'publisher': 'MDPI AG', 'issnl': '2220-9964', 'issne': '2220-9964', 'issnp': '2220-9964', 'wikidata_qid': 'Q27725283'}
container_id fw2uac7a5jggbfgqwh2wqy7yxu
contribs[] {'index': 0, 'creator_id': None, 'creator': None, 'raw_name': 'Wei Mao', 'given_name': 'Wei', 'surname': 'Mao', 'role': 'author', 'raw_affiliation': 'School of Geography, Nanjing Normal University, Nanjing 210023, China', 'extra': {'seq': 'first'}}
{'index': 1, 'creator_id': '2cc55ya63ffmbaa6uj7rt7634i', 'creator': {'state': 'active', 'ident': '2cc55ya63ffmbaa6uj7rt7634i', 'revision': '5b754903-51d6-4d31-a7db-a1b1e7557bcc', 'redirect': None, 'extra': None, 'edit_extra': None, 'display_name': 'Jie Shen', 'given_name': 'Jie', 'surname': 'Shen', 'orcid': '0000-0002-2183-7913', 'wikidata_qid': None}, 'raw_name': 'Jie Shen', 'given_name': 'Jie', 'surname': 'Shen', 'role': 'author', 'raw_affiliation': 'School of Geography, Nanjing Normal University, Nanjing 210023, China', 'extra': {'more_affiliations': ['Key Laboratory of Virtual Geographic Environment of Ministry of Education, Nanjing Normal University, Nanjing 210023, China', 'Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing 210023, China']}}
{'index': 2, 'creator_id': None, 'creator': None, 'raw_name': 'Qian Su', 'given_name': 'Qian', 'surname': 'Su', 'role': 'author', 'raw_affiliation': 'ShanDong EastDawn Corporation, Jinan 250101, China', 'extra': None}
{'index': 3, 'creator_id': None, 'creator': None, 'raw_name': 'Sihu Liu', 'given_name': 'Sihu', 'surname': 'Liu', 'role': 'author', 'raw_affiliation': 'School of Geography, Nanjing Normal University, Nanjing 210023, China', 'extra': None}
{'index': 4, 'creator_id': 'l27nxpc3rbhzfjv2qkpz3rz7cq', 'creator': {'state': 'active', 'ident': 'l27nxpc3rbhzfjv2qkpz3rz7cq', 'revision': '6f18b078-ff80-4f7c-89c2-5a24f89e4b2f', 'redirect': None, 'extra': None, 'edit_extra': None, 'display_name': 'Saied Pirasteh', 'given_name': 'Saied', 'surname': 'Pirasteh', 'orcid': '0000-0002-3177-037X', 'wikidata_qid': None}, 'raw_name': 'Saied Pirasteh', 'given_name': 'Saied', 'surname': 'Pirasteh', 'role': 'author', 'raw_affiliation': 'Institute of Artificial Intelligence, Shaoxing University, Shaoxing 312000, China', 'extra': None}
{'index': 5, 'creator_id': None, 'creator': None, 'raw_name': 'Kunihiro Ishii', 'given_name': 'Kunihiro', 'surname': 'Ishii', 'role': 'author', 'raw_affiliation': 'Asia Air Survey Co., Ltd., Tokyo 160-0023, Japan', 'extra': None}
ext_ids {'doi': '10.3390/ijgi13100349', 'wikidata_qid': None, 'isbn13': None, 'pmid': None, 'pmcid': None, 'core': None, 'arxiv': None, 'jstor': None, 'ark': None, 'mag': None, 'doaj': None, 'dblp': None, 'oai': None, 'hdl': None}
files[] {'state': 'active', 'ident': '2iqvhg3x4bgfjly5hg6syzbwju', 'revision': '3f47c1a6-aac3-4c55-9f6c-22e4a4d0071b', 'redirect': None, 'extra': None, 'edit_extra': None, 'size': 4869620, 'md5': '12fd4418c01b53ca0b5ade79c80cfc27', 'sha1': '88c2033c62aaac96d621e19efde83208abe6ba93', 'sha256': '8c7c0101170937e7cd0ced68419c381f7199619f195aca135e3dd87fecda5299', 'urls': [{'url': 'https://mdpi-res.com/d_attachment/ijgi/ijgi-13-00349/article_deploy/ijgi-13-00349.pdf?version=1727944354', 'rel': 'publisher'}, {'url': 'https://web.archive.org/web/20241004190421/https://mdpi-res.com/d_attachment/ijgi/ijgi-13-00349/article_deploy/ijgi-13-00349.pdf?version=1727944354', 'rel': 'webarchive'}], 'mimetype': 'application/pdf', 'content_scope': None, 'release_ids': ['ydrzsap46rfchlw7vjqmsxc44e'], 'releases': None}
filesets []
issue 10
language en
license_slug CC-BY
number
original_title
pages 349
publisher MDPI AG
refs[] {'index': 0, 'target_release_id': None, 'extra': {'authors': ['Zhang'], 'doi': '10.1016/j.jenvman.2020.110951', 'volume': '271'}, 'key': 'ref_1', 'year': 2020, 'container_name': 'J. Environ. Manag.', 'title': 'Identifying dominant factors of waterlogging events in metropolitan coastal cities: The case study of Guangzhou, China', 'locator': '110951'}
{'index': 1, 'target_release_id': None, 'extra': {'authors': ['Li'], 'volume': '128'}, 'key': 'ref_2', 'year': 2024, 'container_name': 'Int. J. Appl. Earth Obs. Geoinf.', 'title': 'A 3D virtual geographic environment for flood representation towards risk communication', 'locator': '103757'}
{'index': 2, 'target_release_id': None, 'extra': {'authors': ['Li'], 'doi': '10.1111/tgis.12922', 'volume': '26'}, 'key': 'ref_3', 'year': 2022, 'container_name': 'Trans. GIS', 'title': 'Investigations of disaster information representation from a geospatial perspective: Progress, challenges and recommendations', 'locator': '1376'}
{'index': 3, 'target_release_id': None, 'extra': {'authors': ['Li'], 'doi': '10.1016/j.isprsjprs.2015.10.012', 'volume': '115'}, 'key': 'ref_4', 'year': 2016, 'container_name': 'ISPRS J. Photogramm. Remote Sens.', 'title': 'Geospatial big data handling theory and methods: A review and research challenges', 'locator': '119'}
{'index': 4, 'target_release_id': None, 'extra': {'doi': '10.3390/ijgi8040184', 'unstructured': 'Wang, S., Zhang, X., Ye, P., Du, M., Lu, Y., and Xue, H. (2019). Geographic knowledge graph (GeoKG): A formalized geographic knowledge representation. ISPRS Int. J. Geo-Inf., 8.'}, 'key': 'ref_5', 'year': None, 'container_name': None, 'title': None, 'locator': None}
{'index': 5, 'target_release_id': None, 'extra': {'authors': ['Du'], 'doi': '10.1080/13658816.2021.2005795', 'volume': '36'}, 'key': 'ref_6', 'year': 2022, 'container_name': 'Int. J. Geogr. Inf. Sci.', 'title': 'GIS-KG: Building a large-scale hierarchical knowledge graph for geographic information science', 'locator': '873'}
{'index': 6, 'target_release_id': None, 'extra': {'doi': '10.3390/ijgi8100428', 'unstructured': 'Jiang, B., Tan, L., Ren, Y., and Li, F. (2019). Intelligent interaction with virtual geographical environments based on geographic knowledge graph. ISPRS Int. J. Geo-Inf., 8.'}, 'key': 'ref_7', 'year': None, 'container_name': None, 'title': None, 'locator': None}
{'index': 7, 'target_release_id': None, 'extra': {'authors': ['Mai'], 'doi': '10.1111/tgis.12629', 'volume': '24'}, 'key': 'ref_8', 'year': 2020, 'container_name': 'Trans. GIS', 'title': 'SE-KGE: A location-aware knowledge graph embedding model for geographic question answering and spatial semantic lifting', 'locator': '623'}
{'index': 8, 'target_release_id': None, 'extra': {'authors': ['Zheng'], 'doi': '10.1080/13658816.2021.1962527', 'volume': '36'}, 'key': 'ref_9', 'year': 2022, 'container_name': 'Int. J. Geogr. Inf. Sci.', 'title': 'A knowledge representation model based on the geographic spatiotemporal process', 'locator': '674'}
{'index': 9, 'target_release_id': None, 'extra': {'authors': ['Zhou'], 'doi': '10.1007/s11430-020-9750-4', 'volume': '64'}, 'key': 'ref_10', 'year': 2021, 'container_name': 'Sci. China Earth Sci.', 'title': 'Geoscience knowledge graph in the big data era', 'locator': '1105'}
{'index': 10, 'target_release_id': None, 'extra': {'authors': ['Sun'], 'doi': '10.1109/jstars.2022.3176612', 'volume': '15'}, 'key': 'ref_11', 'year': 2022, 'container_name': 'IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.', 'title': 'Remote sensing image interpretation with semantic graph-based methods: A survey', 'locator': '4544'}
{'index': 11, 'target_release_id': None, 'extra': {'doi': '10.1111/exsy.13372', 'unstructured': 'Wu, X., Gao, J., Bilal, M., Dai, F., Xu, X., Qi, L., and Dou, W. (2023). Federated learning-based private medical knowledge graph for epidemic surveillance in internet of things. Expert Syst., e13372.'}, 'key': 'ref_12', 'year': None, 'container_name': None, 'title': None, 'locator': None}
{'index': 12, 'target_release_id': None, 'extra': {'doi': '10.1007/978-3-031-26422-1_28', 'unstructured': 'Cao, Q., Jiang, R., Yang, C., Fan, Z., Song, X., and Shibasaki, R. (2022, January 19–23). Mepognn: Metapopulation epidemic forecasting with graph neural networks. Proceedings of the Joint European Conference on Machine Learning and Knowledge Discovery in Databases, Grenoble, France.'}, 'key': 'ref_13', 'year': None, 'container_name': None, 'title': None, 'locator': None}
{'index': 13, 'target_release_id': None, 'extra': {'doi': '10.3390/ijgi12030112', 'unstructured': 'Li, W., Wang, S., Chen, X., Tian, Y., Gu, Z., Lopez-Carr, A., Schroeder, A., Currier, K., Schildhauer, M., and Zhu, R. (2023). Geographvis: A knowledge graph and geovisualization empowered cyberinfrastructure to support disaster response and humanitarian aid. ISPRS Int. J. Geo-Inf., 12.'}, 'key': 'ref_14', 'year': None, 'container_name': None, 'title': None, 'locator': None}
{'index': 14, 'target_release_id': None, 'extra': {'authors': ['Liu'], 'volume': '35'}, 'key': 'ref_15', 'year': 2021, 'container_name': 'IEEE Trans. Knowl. Data Eng.', 'title': 'Urban flow pattern mining based on multi-source heterogeneous data fusion and knowledge graph embedding', 'locator': '2133'}
{'index': 15, 'target_release_id': None, 'extra': {'doi': '10.1016/j.oregeorev.2023.105651', 'unstructured': 'Qun, Y., Linfu, X., Yongsheng, L., Rui, W., Bo, W., Ke, D., and Jianbang, W. (2023). Mineral prospectivity mapping integrated with geological map Knowledge graph and geochemical data: A Case Study of gold deposits at Raofeng area, Shaanxi Province. Ore Geol. Rev., 105651.'}, 'key': 'ref_16', 'year': None, 'container_name': None, 'title': None, 'locator': None}
{'index': 16, 'target_release_id': None, 'extra': {'authors': ['Ma'], 'doi': '10.1016/j.gsf.2022.101453', 'volume': '14'}, 'key': 'ref_17', 'year': 2023, 'container_name': 'Geosci. Front.', 'title': 'A knowledge graph and service for regional geologic time standards', 'locator': '101453'}
{'index': 17, 'target_release_id': None, 'extra': {'authors': ['Li'], 'doi': '10.1007/s11069-020-03879-z', 'volume': '101'}, 'key': 'ref_18', 'year': 2020, 'container_name': 'Nat. Hazards', 'title': 'An on-demand construction method of disaster scenes for multilevel users', 'locator': '409'}
{'index': 18, 'target_release_id': None, 'extra': {'doi': '10.2166/hydro.2022.070', 'volume': '24'}, 'key': 'ref_19', 'year': 2022, 'container_name': 'J. Hydroinform.', 'title': 'Characterizing water quality datasets through multi-dimensional knowledge graphs: A case study of the Bogota river basin', 'locator': '295'}
{'index': 19, 'target_release_id': None, 'extra': {'authors': ['Zhang'], 'doi': '10.1080/17538947.2020.1773950', 'volume': '13'}, 'key': 'ref_20', 'year': 2020, 'container_name': 'Int. J. Digit. Earth', 'title': 'The construction of personalized virtual landslide disaster environments based on knowledge graphs and deep neural networks', 'locator': '1637'}
{'index': 20, 'target_release_id': None, 'extra': {'doi': '10.3390/ijgi8020059', 'unstructured': 'Yu, L., Qiu, P., Gao, J., and Lu, F. (2019). A knowledge-based filtering method for open relations among geo-entities. ISPRS Int. J. Geo-Inf., 8.'}, 'key': 'ref_21', 'year': None, 'container_name': None, 'title': None, 'locator': None}
{'index': 21, 'target_release_id': None, 'extra': {'doi': '10.3390/ijgi8060254', 'unstructured': 'Qiu, P., Gao, J., Yu, L., and Lu, F. (2019). Knowledge embedding with geospatial distance restriction for geographic knowledge graph completion. ISPRS Int. J. Geo-Inf., 8.'}, 'key': 'ref_22', 'year': None, 'container_name': None, 'title': None, 'locator': None}
{'index': 22, 'target_release_id': None, 'extra': {'authors': ['Qiu'], 'doi': '10.1080/20964471.2019.1657719', 'volume': '3'}, 'key': 'ref_23', 'year': 2019, 'container_name': 'Big Earth Data', 'title': 'Detecting geo-relation phrases from web texts for triplet extraction of geographic knowledge: A context-enhanced method', 'locator': '297'}
{'index': 23, 'target_release_id': None, 'extra': {'authors': ['Nguyen'], 'doi': '10.1016/j.inffus.2020.03.014', 'volume': '61'}, 'key': 'ref_24', 'year': 2020, 'container_name': 'Inf. Fusion', 'title': 'Knowledge graph fusion for smart systems: A survey', 'locator': '56'}
{'index': 24, 'target_release_id': None, 'extra': {'doi': '10.1007/978-3-319-25007-6_17', 'unstructured': 'Wang, H., Fang, Z., Zhang, L., Pan, J.Z., and Ruan, T. (2015, January 11–15). Effective online knowledge graph fusion. Proceedings of the International Semantic Web Conference, Bethlehem, PA, USA.'}, 'key': 'ref_25', 'year': None, 'container_name': None, 'title': None, 'locator': None}
{'index': 25, 'target_release_id': None, 'extra': {'doi': '10.3390/ijgi11090493', 'unstructured': 'Huang, Z., Qiu, P., Yu, L., and Lu, F. (2022). MSEN-GRP: A Geographic Relations Prediction Model Based on Multi-Layer Similarity Enhanced Networks for Geographic Relations Completion. ISPRS Int. J. Geo-Inf., 11.'}, 'key': 'ref_26', 'year': None, 'container_name': None, 'title': None, 'locator': None}
{'index': 26, 'target_release_id': None, 'extra': {'authors': ['Wang'], 'doi': '10.1111/tgis.12627', 'volume': '24'}, 'key': 'ref_27', 'year': 2020, 'container_name': 'Trans. GIS', 'title': 'NeuroTPR: A neuro-net toponym recognition model for extracting locations from social media messages', 'locator': '719'}
{'index': 27, 'target_release_id': None, 'extra': {'authors': ['Ding'], 'volume': '27'}, 'key': 'ref_28', 'year': 2024, 'container_name': 'Geo-Spat. Inf. Sci.', 'title': 'Integrating 3D city data through knowledge graphs', 'locator': '1'}
{'index': 28, 'target_release_id': None, 'extra': {'authors': ['Ding'], 'doi': '10.1016/j.websem.2021.100662', 'volume': '71'}, 'key': 'ref_29', 'year': 2021, 'container_name': 'J. Web Semant.', 'title': 'Towards the next generation of the LinkedGeoData project using virtual knowledge graphs', 'locator': '100662'}
{'index': 29, 'target_release_id': None, 'extra': {'doi': '10.3390/w16070942', 'unstructured': 'Zou, Y., Huang, Y., Wang, Y., Zhou, F., Xia, Y., and Shen, Z. (2024). The construction of urban rainstorm disaster event knowledge graph considering evolutionary processes. Water, 16.'}, 'key': 'ref_30', 'year': None, 'container_name': None, 'title': None, 'locator': None}
{'index': 30, 'target_release_id': None, 'extra': {'authors': ['Berragan'], 'doi': '10.1080/13658816.2022.2133125', 'volume': '37'}, 'key': 'ref_31', 'year': 2023, 'container_name': 'Int. J. Geogr. Inf. Sci.', 'title': 'Transformer based named entity recognition for place name extraction from unstructured text', 'locator': '747'}
{'index': 31, 'target_release_id': None, 'extra': {'authors': ['Li'], 'doi': '10.1111/tgis.13170', 'volume': '28'}, 'key': 'ref_32', 'year': 2024, 'container_name': 'Trans. GIS', 'title': 'DePNR: A DeBERTa-based deep learning model with complete position embedding for place name recognition from geographical literature', 'locator': '993'}
{'index': 32, 'target_release_id': None, 'extra': {'unstructured': 'Trisedya, B.D., Qi, J., and Zhang, R. (February, January 27). Entity alignment between knowledge graphs using attribute embeddings. Proceedings of the AAAI Conference on Artificial Intelligence, Honolulu, HI, USA.'}, 'key': 'ref_33', 'year': None, 'container_name': None, 'title': None, 'locator': None}
{'index': 33, 'target_release_id': None, 'extra': {'authors': ['Yu'], 'doi': '10.1080/17538947.2017.1359688', 'volume': '11'}, 'key': 'ref_34', 'year': 2018, 'container_name': 'Int. J. Digit. Earth', 'title': 'A holistic approach to aligning geospatial data with multidimensional similarity measuring', 'locator': '845'}
{'index': 34, 'target_release_id': None, 'extra': {'authors': ['Worboys'], 'doi': '10.1080/02693799208901920', 'volume': '6'}, 'key': 'ref_35', 'year': 1992, 'container_name': 'Int. J. Geogr. Inf. Syst.', 'title': 'A generic model for planar geographical objects', 'locator': '353'}
{'index': 35, 'target_release_id': None, 'extra': {'authors': ['Yi'], 'doi': '10.1080/13658816.2014.890201', 'volume': '28'}, 'key': 'ref_36', 'year': 2014, 'container_name': 'Int. J. Geogr. Inf. Sci.', 'title': 'A representation framework for studying spatiotemporal changes and interactions of dynamic geographic phenomena', 'locator': '1010'}
{'index': 36, 'target_release_id': None, 'extra': {'doi': '10.3390/ijgi8020100', 'unstructured': 'Xue, C., Wu, C., Liu, J., and Su, F. (2019). A novel process-oriented graph Storage for dynamic geographic phenomena. ISPRS Int. J. Geo-Inf., 8.'}, 'key': 'ref_37', 'year': None, 'container_name': None, 'title': None, 'locator': None}
{'index': 37, 'target_release_id': None, 'extra': {'doi': '10.1109/icisce.2017.159', 'unstructured': 'Zheng, L., Zhou, L., Zhao, X., Liao, L., and Liu, W. (2017, January 21–23). The spatio-temporal data modeling and application based on graph database. Proceedings of the 2017 4th International Conference on Information Science and Control Engineering (ICISCE), Changsha, China.'}, 'key': 'ref_38', 'year': None, 'container_name': None, 'title': None, 'locator': None}
{'index': 38, 'target_release_id': None, 'extra': {'doi': '10.1145/3297156.3297193', 'unstructured': 'Yu, B., Zhang, C., Sun, J., and Zhang, Y. (2018, January 25–26). Massive GIS spatio-temporal data storage method in cloud environment. Proceedings of the 2018 2nd International Conference on Computer Science and Artificial Intelligence, Chengdu, China.'}, 'key': 'ref_39', 'year': None, 'container_name': None, 'title': None, 'locator': None}
{'index': 39, 'target_release_id': None, 'extra': {'authors': ['Gruber'], 'doi': '10.1006/ijhc.1995.1081', 'volume': '43'}, 'key': 'ref_40', 'year': 1995, 'container_name': 'Int. J. Hum.-Comput. Stud.', 'title': 'Toward principles for the design of ontologies used for knowledge sharing?', 'locator': '907'}
{'index': 40, 'target_release_id': None, 'extra': {'doi': '10.3390/s17112545', 'unstructured': 'Alirezaie, M., Kiselev, A., Längkvist, M., Klügl, F., and Loutfi, A. (2017). An ontology-based reasoning framework for querying satellite images for disaster monitoring. Sensors, 17.'}, 'key': 'ref_41', 'year': None, 'container_name': None, 'title': None, 'locator': None}
{'index': 41, 'target_release_id': None, 'extra': {'doi': '10.1016/b978-0-12-394846-5.00006-0', 'unstructured': 'Giupponi, C., Mojtahed, V., Gain, A.K., Biscaro, C., and Balbi, S. (2015). Integrated risk assessment of water-related disasters. Hydro-Meteorological Hazards, Risks and Disasters, Elsevier.'}, 'key': 'ref_42', 'year': None, 'container_name': None, 'title': None, 'locator': None}
{'index': 42, 'target_release_id': None, 'extra': {'authors': ['Jung'], 'doi': '10.1007/s10586-015-0424-1', 'volume': '18'}, 'key': 'ref_43', 'year': 2015, 'container_name': 'Clust. Comput.', 'title': 'Ontology-driven slope modeling for disaster management service', 'locator': '677'}
{'index': 43, 'target_release_id': None, 'extra': {'authors': ['Garrido'], 'volume': '159'}, 'key': 'ref_44', 'year': 2012, 'container_name': 'WIT Trans. Ecol. Environ.', 'title': 'Ontology for flood management: A proposal', 'locator': '3'}
{'index': 44, 'target_release_id': None, 'extra': {'authors': ['Wu'], 'doi': '10.1007/s12145-019-00439-3', 'volume': '13'}, 'key': 'ref_45', 'year': 2020, 'container_name': 'Earth Sci. Inform.', 'title': 'An ontology-based framework for heterogeneous data management and its application for urban flood disasters', 'locator': '377'}
{'index': 45, 'target_release_id': None, 'extra': {'doi': '10.1145/2740908.2741721', 'unstructured': 'Parsons, S., Atkinson, P.M., Simperl, E., and Weal, M. (2015, January 18–22). Thematically analysing social network content during disasters through the lens of the disaster management lifecycle. Proceedings of the 24th International Conference on World Wide Web, Florence, Italy.'}, 'key': 'ref_46', 'year': None, 'container_name': None, 'title': None, 'locator': None}
{'index': 46, 'target_release_id': None, 'extra': {'authors': ['Matsuo'], 'doi': '10.20965/jdr.2016.p0322', 'volume': '11'}, 'key': 'ref_47', 'year': 2016, 'container_name': 'J. Disaster Res.', 'title': 'Disaster Reduction Measures Against Inundation in Underground Area and Development of Disaster Prevention Action Plan Using TimeLine', 'locator': '322'}
{'index': 47, 'target_release_id': None, 'extra': {'authors': ['Satomura'], 'doi': '10.2208/journalofjsce.8.1_261', 'volume': '8'}, 'key': 'ref_48', 'year': 2020, 'container_name': 'J. JSCE', 'title': "Social Experiment for My-Timeline Development to Improve Residents'awareness of Flood Disaster Prevention", 'locator': '261'}
{'index': 48, 'target_release_id': None, 'extra': {'doi': '10.1109/icnsc.2018.8361341', 'unstructured': 'Leijie, F., Yv, B., and Zhenyuan, Z. (2018, January 27–29). Constructing a vertical knowledge graph for non-traditional machining industry. Proceedings of the 2018 IEEE 15th International Conference on Networking, Sensing and Control (ICNSC), Zhuhai, China.'}, 'key': 'ref_49', 'year': None, 'container_name': None, 'title': None, 'locator': None}
{'index': 49, 'target_release_id': None, 'extra': {'doi': '10.1007/978-3-642-25073-6_15', 'unstructured': 'Grüninger, M. (2011, January 23–27). Verification of the OWL-time ontology. Proceedings of the International Semantic Web Conference, Bonn, Germany.'}, 'key': 'ref_50', 'year': None, 'container_name': None, 'title': None, 'locator': None}
{'index': 50, 'target_release_id': None, 'extra': {'doi': '10.1038/s41598-022-08667-2', 'unstructured': 'Sun, J., Liu, Y., Cui, J., and He, H. (2022). Deep learning-based methods for natural hazard named entity recognition. Sci. Rep., 12.'}, 'key': 'ref_51', 'year': None, 'container_name': None, 'title': None, 'locator': None}
{'index': 51, 'target_release_id': None, 'extra': {'doi': '10.1145/3502223.3502247', 'unstructured': 'Huaman, E., and Fensel, D. (2021, January 6–8). Knowledge graph curation: A practical framework. Proceedings of the 10th International Joint Conference on Knowledge Graphs, Online.'}, 'key': 'ref_52', 'year': None, 'container_name': None, 'title': None, 'locator': None}
{'index': 52, 'target_release_id': None, 'extra': {'unstructured': 'Chen, H., Cao, G., Chen, J., and Ding, J. (2019, January 24–27). A practical framework for evaluating the quality of knowledge graph. Proceedings of the Knowledge Graph and Semantic Computing: Knowledge Computing and Language Understanding: 4th China Conference, CCKS 2019, Hangzhou, China. Revised Selected Papers 4, 2019.'}, 'key': 'ref_53', 'year': None, 'container_name': None, 'title': None, 'locator': None}
{'index': 53, 'target_release_id': None, 'extra': {'authors': ['Xue'], 'volume': '35'}, 'key': 'ref_54', 'year': 2022, 'container_name': 'IEEE Trans. Knowl. Data Eng.', 'title': 'Knowledge graph quality management: A comprehensive survey', 'locator': '4969'}
{'index': 54, 'target_release_id': None, 'extra': {'authors': ['Paulheim'], 'doi': '10.3233/sw-160218', 'volume': '8'}, 'key': 'ref_55', 'year': 2017, 'container_name': 'Semant. Web', 'title': 'Knowledge graph refinement: A survey of approaches and evaluation methods', 'locator': '489'}
release_date 2024-10-03
release_stage published
release_type article-journal
release_year 2024
subtitle
title A Method for Constructing an Urban Waterlogging Emergency Knowledge Graph Based on Spatiotemporal Processes
version
volume 13
webcaptures []
withdrawn_date
withdrawn_status
withdrawn_year
work_id hcqfwli52rexpfqkcsljjyiqlm
As JSON via API

Extra Metadata (raw JSON)

crossref.alternative-id ['ijgi13100349']
crossref.funder [{'award': ['2021YFE0112300'], 'name': 'National Key R&D Program of China'}, {'DOI': '10.13039/501100001809', 'award': ['42371444'], 'doi-asserted-by': 'publisher', 'id': [{'asserted-by': 'publisher', 'id': '10.13039/501100001809', 'id-type': 'DOI'}], 'name': 'National Natural Science Foundation of China'}]
crossref.license [{'URL': 'https://creativecommons.org/licenses/by/4.0/', 'content-version': 'vor', 'delay-in-days': 0, 'start': '2024-10-03T00:00:00Z'}]
crossref.type journal-article