Stochastic dynamics of phase-slip trains and superconductive-resistive switching in current-biased nanowires release_y23wia3uffeyhgxfyqeywbigwu

by David Pekker, Nayana Shah, Mitrabhanu Sahu, Alexey Bezryadin, Paul M. Goldbart

Released as a article .

2009  

Abstract

Superconducting nanowires fabricated via carbon-nanotube-templating can be used to realize and study quasi-one-dimensional superconductors. However, measurement of the linear resistance of these nanowires have been inconclusive in determining the low-temperature behavior of phase-slip fluctuations, both quantal and thermal. Thus, we are motivated to study the nonlinear current-voltage characteristics in current-biased nanowires and the stochastic dynamics of superconductive-resistive switching, as a way of probing phase-slip events. In particular, we address the question: Can a single phase-slip event occurring somewhere along the wire--during which the order-parameter fluctuates to zero--induce switching, via the local heating it causes? We explore this and related issues by constructing a stochastic model for the time-evolution of the temperature in a nanowire whose ends are maintained at a fixed temperature. We derive the corresponding master equation as tool for evaluating and analyzing the mean switching time at a given value of current. The model indicates that although, in general, several phase-slip events are necessary to induce switching via a thermal runaway, there is indeed a regime of temperatures and currents in which a single event is sufficient. We carry out a detailed comparison of the results of the model with experimental measurements of the distribution of switching currents, and provide an explanation for the counter-intuitive broadening of the distribution width that is observed upon lowering the temperature. Moreover, we identify a regime in which the experiments are probing individual phase-slip events, and thus offer a way for exploring the physics of nanoscale quantum tunneling of the superconducting order parameter.
In text/plain format

Archived Files and Locations

application/pdf   1.0 MB
file_pxywkobwkrdehmj43bc6p3vobu
arxiv.org (repository)
web.archive.org (webarchive)
application/pdf   1.0 MB
file_vlksiatfrbc4vmxujvxypobvnm
archive.org (archive)
Read Archived PDF
Preserved and Accessible
Type  article
Stage   submitted
Date   2009-04-28
Version   v1
Language   en ?
arXiv  0904.4432v1
Work Entity
access all versions, variants, and formats of this works (eg, pre-prints)
Catalog Record
Revision: 065cd1e7-545c-4ad2-b1cd-38d3e9f956f3
API URL: JSON