Minimizing energy among homotopic maps
release_xhk2lf733jfqrakj73llcpfjiq
by
Pengzi Miao
2004 Volume 2004, Issue 30, p1599-1611
Abstract
We study an energy minimizing sequence<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="$\{u_i\}$"><mml:mrow><mml:mo>{</mml:mo><mml:mrow><mml:msub><mml:mi>u</mml:mi><mml:mi>i</mml:mi></mml:msub></mml:mrow><mml:mo>}</mml:mo></mml:mrow></mml:math>in a fixed homotopy class of smooth maps from a<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="$3$"><mml:mn>3</mml:mn></mml:math>-manifold. After deriving an approximate monotonicity property for<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="$\{u_i\}$"><mml:mrow><mml:mo>{</mml:mo><mml:mrow><mml:msub><mml:mi>u</mml:mi><mml:mi>i</mml:mi></mml:msub></mml:mrow><mml:mo>}</mml:mo></mml:mrow></mml:math>and a continuous version of the Luckhaus lemma (Simon, 1996) on<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="$S^2$"><mml:msup><mml:mi>S</mml:mi><mml:mn>2</mml:mn></mml:msup></mml:math>, we show that, passing to a subsequence,<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="$\{u_i\}$"><mml:mrow><mml:mo>{</mml:mo><mml:mrow><mml:msub><mml:mi>u</mml:mi><mml:mi>i</mml:mi></mml:msub></mml:mrow><mml:mo>}</mml:mo></mml:mrow></mml:math>converges strongly in<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="$W^{1,2}$"><mml:msup><mml:mi>W</mml:mi><mml:mrow><mml:mn>1</mml:mn><mml:mo>,</mml:mo><mml:mn>2</mml:mn></mml:mrow></mml:msup></mml:math>topology wherever there is small energy concentration.
In application/xml+jats
format
Archived Files and Locations
application/pdf
162.6 kB
file_tob7zmvztjhpnmgkeipooryssq
|
web.archive.org (webarchive) math.stanford.edu:80 (web) |
application/pdf
554.4 kB
file_giukv5jcqbegnjtvodrtatalui
|
web.archive.org (webarchive) pdfs.semanticscholar.org (aggregator) |
application/pdf
2.3 MB
file_7ehfcoeqwfb3zpltgwi5fv3eoq
|
downloads.hindawi.com (publisher) web.archive.org (webarchive) |
access all versions, variants, and formats of this works (eg, pre-prints)
Crossref Metadata (via API)
Worldcat
SHERPA/RoMEO (journal policies)
wikidata.org
CORE.ac.uk
Semantic Scholar
Google Scholar