Experimental validation of CFD simulations of bioaerosol movement in a mechanically ventilated airspace
release_xaz4yj27n5clvnnoa2rix4x65e
by
Amy La,
Qiang Zhang
2019 p5.01-5.14
Abstract
A CFD (computational fluid dynamics) model was developed to simulate the movement of bioaerosols in mechanically-ventilated chambers and the results were validated with experiments. Liquid aerosols containing Porcine Reproductive and Respiratory Syndrome Virus (PRRSV) were artificially generated in the chambers. Bioaerosol concentration was monitored with an optical particle counter until steady-state conditions were achieved (aerosols containing viruses are referred to as bioaerosols in this paper). Four treatments with two ventilation rates and two bioaerosol generation rates were tested. The standard k-ɛ turbulence model and a discrete phase model with unsteady tracking was used in an ANSYS Fluent CFD model to simulate the airflow and bioaerosol movement until steady-state was reached. A mesh refinement test was performed to select an optimal mesh size for simulations. The CFD simulations showed good agreement with the measured bioaerosol concentrations at steady-state with differences of 2% to 8%, normalized mean square error of 0.01 to 0.19, and fractional bias of 0.02 to 0.08. Simulations and validation during the transient phase could not be verified because of limited measurement locations.
In application/xml+jats
format
Archived Files and Locations
application/pdf
2.2 MB
file_jy6ldpp7trf7ldezk6hvwo77yi
|
library.csbe-scgab.ca (web) web.archive.org (webarchive) |
access all versions, variants, and formats of this works (eg, pre-prints)
Crossref Metadata (via API)
Worldcat
SHERPA/RoMEO (journal policies)
wikidata.org
CORE.ac.uk
Semantic Scholar
Google Scholar